
Charles University in Prague
Faculty of Mathematics and Physics

Master Thesis

David Majda

Translating Ruby to PHP

Department of Software Engineering
Supervisor: RNDr. David Bednárek

Study Program: Computer Science, Software Systems

I would like to thank my supervisor RNDr. David Bednárek for his advice, my parents
for their support and Markéta for her patience.

I hereby declare that I have elaborated this master thesis on my own and listed all used
references. I agree with lending of this master thesis. This thesis may be reproduced for
academic purposes.

In Prague, August 5, 2008 David Majda

1

Title: Translating Ruby to PHP
Author: David Majda
Department: Department of Software Engineering
Supervisor: RNDr. David Bednárek
Supervisor’s e-mail address: david.bednarek@mff.cuni.cz
Abstract:

The goal of the work is to design and implement a compiler translating a significant subset
of the Ruby language into PHP, with emphasis on the correct translation of dynamic and
functional language elements and compatibility with the original Ruby language imple-
mentation. The work begins with an introduction of the Ruby language and an overview
of its existing implementations, highlighting their interesting properties. The work then
focuses on analysis of the individual language elements’ properties and a description of
their translation to PHP. Detailed overview of the implemented constructs and standard
library elements is attached. The result of the work is practically usable compiler that
can be further extended and used in the production environment after implementing re-
maining Ruby language elements.

Keywords: Ruby, PHP, compiler, Ruby implementation

Název práce: Překladač Ruby do PHP
Autor: David Majda
Katedra: Katedra softwarového inženýrstv́ı
Vedoućı diplomové práce: RNDr. David Bednárek
E-mail vedoućıho: david.bednarek@mff.cuni.cz
Abstrakt:

Ćılem práce je návrh a implementace překladače podmnožiny jazyka Ruby do PHP. Důraz
je přitom kladen na korektńı překlad dynamických a funkcionálńıch prvk̊u jazyka a kom-
patibilitu s originálńı implementaćı jazyka Ruby. Práce zač́ıná představeńım jazyka Ruby
a přehledem jeho existuj́ıćıch implementaćı se zd̊urazněńım jejich zaj́ımavých vlastnost́ı.
Těžǐstě práce spoč́ıvá v analýze vlastnost́ı jednotlivých jazykových element̊u jazyka Ruby
a popisu jejich překladu do PHP. Přiložen je podrobný přehled implementovaných kon-
strukćı a součást́ı standardńı knihovny jazyka. Výsledkem práce je prakticky použitelný
překladač, který může být dále rozšǐrován a po př́ıpadné implementaci zbývaj́ıćıch prvk̊u
jazyka Ruby nasazen v produkčńım prostřed́ı.

Kĺıčová slova: Ruby, PHP, překladač, implementace Ruby

2

Contents

1 Introduction 7
1.1 Motivation . 7
1.2 Translator Architecture . 8
1.3 Overview . 9

2 Ruby Language 10
2.1 History . 10
2.2 Specification . 11
2.3 Features . 11

2.3.1 Dynamic Typing . 11
2.3.2 Object System . 12
2.3.3 Blocks and Functional Programming Support 12
2.3.4 Introspection and Metaprogramming Facilities 13
2.3.5 Text-processing Features . 13
2.3.6 Error Handling . 13
2.3.7 Automatic Memory Management with Garbage Collection 13
2.3.8 Built-in Threading and Continuation Support 14

2.4 Typical Usage . 14
2.5 Implementations . 15

2.5.1 MRI . 15
2.5.2 JRuby . 16
2.5.3 IronRuby . 17
2.5.4 Rubinius . 17
2.5.5 Other Implementations . 18

2.5.5.1 MagLev . 18
2.5.5.2 MacRuby . 19
2.5.5.3 XRuby . 20
2.5.5.4 Ruby.NET . 20
2.5.5.5 Cardinal . 20
2.5.5.6 HotRuby . 21
2.5.5.7 IronMonkey . 21

2.5.6 Summary . 22

3 Translator Design 24
3.1 Implementation Language . 24
3.2 Supported Ruby Subset . 25
3.3 Supported PHP Version . 25

3

3.4 Optimization . 25
3.5 Integration with PHP . 26

3.5.1 Using Ruby Code in PHP . 27
3.5.2 Using PHP Code from Compiled Ruby Programs 27

4 PHP Runtime 29
4.1 Ruby Object Representation . 30

4.1.1 Ruby Object Representation in MRI 30
4.1.2 Ruby Object Representation in PHP Runtime 31

4.1.2.1 Pass-by-value vs. Pass-by-reference Problem 32
4.2 Implementation of Ruby Objects . 32

4.2.1 Object Identity . 33
4.3 Classes and Modules . 33

4.3.1 Classes . 33
4.3.2 Modules . 34
4.3.3 Implications . 34

4.4 Variables . 34
4.4.1 Local Variables . 34
4.4.2 Global Variables . 35
4.4.3 Instance Variables, Class Variables and Constants 35

4.5 Methods . 35
4.5.1 Method Information . 36
4.5.2 Invocation . 36
4.5.3 Parameters . 36
4.5.4 Stack . 37

4.6 Blocks . 37
4.7 Exception Handling . 37
4.8 Core Library Classes and Modules . 38

4.8.1 Core Library Classes and Modules in MRI 38
4.8.2 Core Library Classes and Modules in PHP Runtime 39

5 Compiler 40
5.1 Parser . 40

5.1.1 Problems with Parsing Ruby . 40
5.1.2 Parser Implementation . 41
5.1.3 AST Representation . 42

5.2 Transformer . 42
5.2.1 Transformer Design . 43
5.2.2 Statement-Expression Mismatch . 43

5.2.2.1 The expression? Method 44
5.2.2.2 Saving of the Node Value 44
5.2.2.3 Solving the Statement-Expression Mismatch 44

5.2.3 Transformation of Ruby Constructs 45
5.2.3.1 Literals . 45
5.2.3.2 Variables and Constants 45
5.2.3.3 Pseudo-variables . 47
5.2.3.4 Assignments . 47
5.2.3.5 Block Expressions . 47
5.2.3.6 Conditional Statements 47

4

5.2.3.7 Looping Statements . 48
5.2.3.8 break and next Statements 48
5.2.3.9 Method Definitions, Redefinitions and Undefinitions . . . 48
5.2.3.10 Method Invocations . 49
5.2.3.11 return and super Statements 50
5.2.3.12 Blocks and the yield Statement 51
5.2.3.13 Class and Module Definitions and Redefinitions 51
5.2.3.14 Exception Raising and Handling 52

5.3 Serializer . 53

6 Related Work 54
6.1 HotRuby . 54
6.2 Python to OCaml Compiler . 54
6.3 haXe . 55

6.3.1 PHP Backend . 55
6.4 Summary . 56

7 Conclusion 57
7.1 Inherent Limitations . 57
7.2 Future Work . 58

7.2.1 Increasing Ruby Language Coverage 58
7.2.2 Optimization . 58
7.2.3 Ruby and PHP Integration . 59
7.2.4 Multiple Platform Support . 59
7.2.5 Other Possible Improvements . 60

References 61

A Installation and Usage 64
A.1 Requirements . 64

A.1.1 Operating System . 64
A.1.2 Ruby . 64
A.1.3 PHP . 65

A.2 Installation . 65
A.3 Usage . 65

B Supported Features 67
B.1 General Limitations . 67
B.2 Language Elements . 67
B.3 Core Classes . 69

B.3.1 ArgumentError . 69
B.3.2 Array . 69
B.3.3 Bignum . 69
B.3.4 Class . 69
B.3.5 EOFError . 69
B.3.6 Exception . 69
B.3.7 FalseClass . 70
B.3.8 fatal . 70
B.3.9 File . 70

5

B.3.10 Fixnum . 70
B.3.11 Float . 70
B.3.12 FloatDomainError . 70
B.3.13 Hash . 70
B.3.14 IOError . 71
B.3.15 IndexError . 71
B.3.16 Integer . 71
B.3.17 LoadError . 71
B.3.18 LocalJumpError . 71
B.3.19 Module . 71
B.3.20 NameError . 71
B.3.21 NameError::message . 72
B.3.22 NilClass . 72
B.3.23 NoMemoryError . 72
B.3.24 NoMethodError . 72
B.3.25 NotImplementedError . 72
B.3.26 Numeric . 72
B.3.27 Object . 72
B.3.28 Proc . 72
B.3.29 Range . 73
B.3.30 RangeError . 73
B.3.31 RegexpError . 73
B.3.32 RuntimeError . 73
B.3.33 ScriptError . 73
B.3.34 SecurityError . 73
B.3.35 StandardError . 73
B.3.36 String . 73
B.3.37 Symbol . 73
B.3.38 SyntaxError . 74
B.3.39 SystemExit . 74
B.3.40 SystemStackError . 74
B.3.41 ThreadError . 74
B.3.42 TrueClass . 74
B.3.43 TypeError . 74
B.3.44 ZeroDivisionError . 74

B.4 Core Modules . 74
B.4.1 Comparable . 74
B.4.2 Enumerable . 74
B.4.3 Kernel . 75
B.4.4 ObjectSpace . 75

B.5 Predefined Constants . 75
B.6 Predefined Global Variables . 76

6

Chapter 1

Introduction

The primary goal of this work is to design and implement a compiler translating a signifi-
cant subset of the Ruby language [1] into PHP [2], with emphasis on the correct translation
of dynamic and functional language elements and compatibility with the original Ruby
language implementation.

The result is a practically usable compiler (available on the accompanying CD), which is
able to translate simple one-file Ruby programs, supports majority of Ruby language ele-
ments and a significant part of the core class library1 and that can be extended to support
the rest. After implementing remaining parts of the Ruby language, it could potentially
be used in production environment as an alternative Ruby language implementation.

To achieve the goal of writing the compiler, it was necessary to study the documenta-
tion and internals of existing Ruby implementations. The overview highlighting their
interesting properties is presented in this thesis.

1.1 Motivation

Motivation for the thesis topic comes from real-world usage of the Ruby language in
the Ruby on Rails framework [3]. Ruby on Rails is a tool for rapid development of the
web applications. It is based on MVC pattern [4, 5], which dictates how the application
should be structured, and ActiveRecord pattern [6], which abstracts the low-level database
operations, resulting in simpler and faster web application development when compared
to e.g. PHP. However, to run an application created in Ruby on Rails on a server, it is
necessary to install support for Ruby, various libraries and tools.

Even when supported by the server, running Ruby on Rails application is not easy—
typically it requires setting up a cluster of Ruby Mongrel web servers with some leading
proxy server and a load balancer.2 The cluster is required because Rails are not multi-
threaded and the Ruby interpreter does not allow more Ruby contexts in one process.

1Detailed list of supported features is included in Appendix B.
2New deployment option emerged recently: Phusion Passenger [7], also known as mod rails. This is

a module for the Apache web server that simplifies running and deploying Rails applications. However
at the time of writing, this option is not in widespread use yet and it does not solve all Rails deployment
problems.

7

Thus, to serve multiple concurrent requests, multiple server processes running the same
application are needed.

The requirement to run multiple processes containing the Ruby interpreter with fully
loaded Rails environment has negative consequences to memory consumption (typical
Mongrel process requires 20–40 MB RAM). This severely limits the number of applications
that can be run concurrently on a shared server.

Complicated setup and relatively big memory consumption of Rails applications are prob-
ably the main reasons why companies providing Rails hosting are relatively rare and they
have to ask for a price covering a relatively high expenses. Compare this situation with
PHP, where hosting is a commodity and there are even many companies offering PHP
hosting for free.

The described situation with Rails hosting means that beginners who want to try web
application development will probably choose PHP over Ruby on Rails. From their point
of view it is a cheaper and simpler option. They would not want to mess with complicated
setup and pay for publishing of their application, when they can just write it in PHP
and put it on any free-hosting simply by copying the files via FTP. Moreover, existing
PHP developers who have paid for their hosting cannot use that hosting for their Rails
applications.

This is the situation in which the idea of Ruby to PHP compiler was born. It would be
great if the developer could write his or her application in Ruby on Rails, use some kind
of tool which would translate the whole application to PHP and then upload the resulting
code to any PHP web server. The application would run like any other PHP application.

The idea was indeed challenging and seemed useful enough to pursue. However it was
soon realized that the implementation of the whole concept would require huge amount
of work, certainly exceeding the scope of a single master thesis. But the core of the
project—Ruby to PHP translator—looked like a project of suitable size, when reduced to
a reasonable subset of Ruby.

1.2 Translator Architecture

The translator is divided into two main parts—the compiler and the PHP runtime.

The compiler accepts a Ruby source code on its input and produces equivalent PHP code
on its output. Internally, it uses a lexer and parser to convert the Ruby source code into
an abstract syntax tree. The actual conversion routines then walk around this tree and
convert it into a similar tree containing nodes representing a program in PHP, which is
serialized to the output.

The resulting PHP code is not standalone, but depends on supporting functionality pro-
vided by the PHP runtime. The runtime is necessary for several reasons:

1. Ruby language complexity. Many seemingly simple operations (such as class
definition or a method call) have quite complex behavior and many side effects,
unmatched by any PHP constructs. It would be inefficient and just ugly to emit
PHP code implementing such operations again and again for every instance of given
language element. Instead, in many places it was chosen to encapsulate particular

8

behavior into a helper function, which is contained in the PHP runtime. The emitted
code simply calls this helper function. As a result, the translated Ruby code mostly
consists of invocations of the PHP runtime functions and does not resemble the
original code too much.

2. Ruby language dynamism. Ruby allows performing many operations at runtime
(such as adding or removing methods in classes) which many languages allow only
in compile time. The code implementing these operations must be available to the
translated PHP program when running.

3. Core class library. Ruby heavily depends on its class library, even for such basic
operations like raising3 an exception or including a module in a class. Large part of
this library has been implemented and its code is contained in the PHP runtime.

The runtime therefore consists mainly of the core class library implementation and the
code supporting the compiler-generated code and runtime operations.

Both parts of the translator (the compiler and the PHP runtime) are described in detail
in separate chapters.

1.3 Overview

The work is divided into seven chapters, beginning with the introductory Chapter 1.
Chapter 2 briefly introduces the Ruby language and highlights its distinctive features,
along with a summary of existing Ruby implementations and their approaches. The
chosen translation approach and key decisions of the translator design are described in
Chapter 3, followed by a description of the implementation specifics in Chapter 4 and
Chapter 5. Related work is summarized in Chapter 6. In Chapter 7 the work is concluded
and areas where the implementation could be improved and further extended are outlined.

Two appendices are included: Appendix A describes the requirements, installation and
usage of the translator. Appendix B contains a detailed list of implemented features.

3What other languages call “throwing an exception”, Ruby calls “raising an exception”. The thesis
sticks with this terminology.

9

Chapter 2

Ruby Language

Ruby is a high-level object-oriented general-purpose language with functional program-
ming elements, dynamic and reflexive features and a rich but clean syntax. It belongs to
the same language family as Python, PHP or JavaScript, but it borrows most features
and syntax from Lisp, Smalltalk and Perl.

The first part of this chapter briefly describes Ruby history and features. This sets up
a context for later chapters of the work so that readers unfamiliar with Ruby are able to
follow.

The second part of this chapter describes Ruby implementations, namely MRI, JRuby,
IronRuby, Rubinius, MacRuby, MagLev, XRuby, Cardinal, HotRuby and IronMonkey,
and highlights their most interesting features.

2.1 History

The Ruby Language was born in Japan, when its creator Yukihiro Matsumoto (often
called “Matz” in Ruby circles) perceived a need for a high level language, optimized for
ease of use and programmer’s convenience as opposed to machine performance. He began
the implementation in February 1993 and first version was released in 1995 as open source
software. More versions followed in next years.

The language initially took off mainly in Japan, but received a significant boost in western
countries after Ruby on Rails—a framework for rapid development of web applications
written in Ruby—became popular in 2006.

The original Ruby implementation was written in C and had various problems (see Sec-
tion 2.5.1). Also, the interaction with other mainstream languages such as Java or C#
was hard to do from Ruby. To remedy this situation, several other Ruby implementations
were created, including JRuby based on JVM and IronRuby based on .NET. Gradually,
some of those implementations went from toy projects to serious competitors to the official
implementation. Most of them are open source software.

Evolution of Ruby still continues under the direction of Yukihiro Matsumoto, with feed-
back from the user community and alternative implementation creators. The development
is divided between the stable 1.8 branch (version 1.8.7-p22 is the most current at the time

10

of writing) and experimental 1.9 branch (version 1.9.0-3 is the most current at the time
of writing). The development of new and sometimes incompatible features happens on
the 1.9 branch, the 1.8 versions are constrained to minor updates and backporting of
compatible features from 1.9. Because of the incompatibilities between Ruby 1.8 and 1.9
and instability of the 1.9 branch, most of the world uses Ruby 1.8, with version 1.8.6-p114
often recognized as the “gold standard”.

2.2 Specification

As with many languages developed as open source software, there is no specification of
the Ruby grammar, behavior and functionality of its core class library. Ruby is simply
a language induced by its implementation.

This poses serious problems for other implementations, which often have to resort to
reverse-engineering Ruby behavior from its source code. While there exists a project [8]
that aims to specify expected behavior in form of executable tests, it is quite young and
the tests have not been completed yet.

Indeed, the absence of formal specification (or even a language grammar) posed significant
problems in development of the translator.

2.3 Features

Ruby’s most distinctive features include:

• Dynamic typing

• Smalltalk-like object system

• Blocks and functional programming support

• Introspection and metaprogramming facilities

• Text-processing features similar to Perl

• Error handling using exceptions

• Automatic memory management with garbage collection

• Built-in threading and continuation support

All these features are described in more detail in the following sections.

2.3.1 Dynamic Typing

Ruby utilizes dynamic typing, which means that the type of the variables is not determined
at their declaration, but depends on the kind of values assigned to them. Values of
different types can be assigned to the variable during its lifetime. Ruby variables are
declared implicitly by assignment.

11

2.3.2 Object System

Ruby is a purely object-oriented language, which means that every value in the language
is an object.

Ruby’s object system is derived from the one used in Smalltalk. It is based on the idea
of message passing, where objects receive named messages with parameters and it is up
to them to respond. Classes usually define methods, which cause the instances to handle
particular message, but they may use the method missing catch-all method to capture
all messages not handled by any method. Most language operators are implemented as
methods.

The object system supports single inheritance, but allows injection of functionality into
defined classes by using modules (this mechanism is often called mixins). This feature
may be used to partially simulate multiple inheritance.

Notable feature of class and module definitions is that there can be Ruby code present
inside them—the definitions are more similar to namespaces than to class definitions in
common languages. This code is executed once (when the file with a class or module
definition is loaded).

Ruby classes and modules are open: methods, constants or class variables contained in
a class or a module can be added, removed or redefined any time. This includes all built-in
classes, such as strings or integers. Large parts of the language semantics can be redefined
any time.

2.3.3 Blocks and Functional Programming Support

Although Ruby is not a functional programming language in the strict sense, it supports
some functional programming constructs.

For example, when calling a method, a programmer can pass it a parametrized anonymous
block of code. The method can yield control to that block and get its return value or
convert it to an object and store it to be invoked later. Blocks have closure properties.

The mechanism is similar to anonymous functions (lambda functions) in other languages
and can be used e.g. to implement callbacks or comparators for sorting routines. Most
often, blocks are used as internal iterators when manipulating collections, which provide
support for traditional functional programming primitives such as map, reduce (called
inject in Ruby) and filter (called find all).

Listing 2.1 shows a simple example of blocks, where a list of squares is created, even
numbers are filtered out of it, the list is then sorted and each item is printed.

Listing 2.1: Ruby program using blocks.

Prints 25, 9 and 1.

(1..5) \

.map { |x| x * x } \

.reject { |x| x % 2 == 0 } \

.reverse \

.each { |x| puts x }

12

2.3.4 Introspection and Metaprogramming Facilities

Ruby offers rich facilities for introspection and metaprogramming. For example, objects
can be asked what class they belong to, whether they respond to a specific method or what
instance variables they contain. Similarly, classes can be asked what methods or constants
they define. Almost all the information carried by objects is available for inspection and
change.

In the example code in Listing 2.2, a new anonymous class is created at runtime and
a method is defined on it. Afterwards, a new instance of this class is created, it is queried
for presence of the defined method and this method is called.

Listing 2.2: Ruby program using reflection and metaprogramming.

klass = Class.new

klass.send(:define_method, :greet) do |name|

puts "Hello, #{name}."

end

instance = klass.new

puts instance.respond_to?(:greet) # Prints "true".

puts instance.greet("reader") # Prints "Hello, reader".

2.3.5 Text-processing Features

Ruby contains built-in regular expression support and many convenience methods that
enable it to process text easily. These features are often used in combination with Ruby
functional elements.

Listing 2.3 shows an example program that finds users in /etc/passwd file who use bash
as their shell and prints their logins, sorted alphabetically. Note how succinct and self-
explaining the program is.

Listing 2.3: Ruby program using text processing features.

puts open("/etc/passwd").readlines.grep(/bash$/).sort.map do |line|

line.split(":")[0]

end

2.3.6 Error Handling

Ruby handles errors using exceptions. Exceptions are objects of class Exception or
some of its subclasses. Raising and catching exceptions is similar to most other common
languages that use exceptions. All exceptions are unchecked (i.e. raised exceptions are
not declared in the method headers and there is no obligation to catch exceptions).

2.3.7 Automatic Memory Management with Garbage Collec-
tion

Programmer in Ruby does not need to worry about memory allocation issues—all memory
is allocated and freed automatically. This is typical for all dynamic languages.

13

In the original implementation, a conservative mark and sweep garbage collector is used,
other implementations often depend on the garbage collector of the underlying platform
(e.g. JVM or .NET).

2.3.8 Built-in Threading and Continuation Support

Using built-in classes Thread and ThreadGroup, Ruby offers threading support directly
in the language. Creating a new thread is as easy as calling a method with a block—see
Listing 2.4 for an example.

Listing 2.4: Ruby program creating a thread.

t = Thread.new do |thread|

print "Hello from a new thread"

end

Ruby implementations differ in the implementation of threads—some use their own im-
plementation (“green threads”), some use threading support of the underlying platform
(see Section 2.5).

Ruby also supports an unusual construct—continuations. They are used very rarely in real
world Ruby programs and are not included in some Ruby implementations for technical
reasons.

2.4 Typical Usage

Since its creation, Ruby was most commonly used as a system scripting language in Unix
environment. Its powerful text processing capabilities are useful when processing outputs
of various programs or reading text files, its dynamic nature makes scripts quick to write
and object-oriented programming support allows to achieve clear code organization and
reuse.

In many places (especially in Japan), Ruby replaced Perl that was traditionally used in
the role of a system scripting language. The advantages of Ruby over Perl are mainly
much cleaner syntax and object-oriented programming support.

Ruby gained significant popularity after appearance of the Ruby on Rails web application
framework [3]. This open source framework aims to simplify development of the web ap-
plications. It is based on MVC pattern [4, 5], which dictates how the application should
be structured, and ActiveRecord pattern [6], which abstracts the low-level database op-
erations. It establishes certain conventions to which the developer must adhere, resulting
in similar structure of all Rails applications and possibility to automate many tasks by
the framework (this is called the Convention over Configuration principle). The frame-
work also respects the Don’t Repeat Yourself principle, avoiding duplicated information
scattered in the application code.

Ruby on Rails significantly uses Ruby metaprogramming facilities and takes advantage
of its dynamic nature. The simple syntax allows creating little internal domain specific
languages, such as the one of ActiveRecord validation specification. It would be harder
to create similar framework in other, more conventional languages.1

1People try nevertheless—see e.g. CakePHP [9].

14

It is not an exaggeration to say that Ruby on Rails is the “killer app” for Ruby and
most programmers who know Ruby know it because they work with the Ruby on Rails
framework.

2.5 Implementations

Currently, several implementations of the Ruby language exist in various stages of devel-
opment. The following sections introduce all implementations known to the thesis author
and highlight their specific features or language extensions.

2.5.1 MRI

MRI [1] is the original implementation of the Ruby language. Its name is an abbreviation
of “Matz Ruby Interpreter”. It is by far the most widely used implementation and also
the most mature one. As there is no formal specification of the Ruby language, it also
serves as a reference implementation—Ruby is essentially the language induced by this
implementation. All other Ruby implementations are generally compared to MRI in terms
of completeness, performance and bugs. The implementation is open source (dual licensed
under GPL and the Ruby License).

During the development, Matz focused mostly on the language and its features, and not
on the quality of the implementation. The result is that the implementation is quite naive
and (according to the thesis author’s judgment) the overall code quality is not high. Matz
himself admits that he is more interested in designing the language than in implementing
it. [10]

There are several areas of the implementation that are often criticized:

• Execution speed. In MRI, the source code is translated into an abstract syn-
tax tree by the parser and executed directly by a naive tree walker. There is no
translation into a bytecode and virtual machine execution. This results in very slow
performance in comparison with other dynamic scripting languages.2

• Bad Unicode support. All strings in Ruby are just sequences of 8-bit characters,
not Unicode code points as in other contemporary languages. The source code itself
can be either in 7-bit ASCII, Kanji (using EUC or SJIS encoding), or UTF-8. The
Unicode support can be added using libraries, but this is a clumsy and limited
solution.

• Threading support. MRI implements Ruby threading support using green threads
(i.e. it does not use threading support provided by the underlying operating system,
but implements its own threads in the user space). This threading model has several
well-known drawbacks3 and also complicates compatibility with other implementa-
tions such as JRuby or IronRuby, where green threads cannot be used because of

2See e.g. language shootout results at http://shootout.alioth.debian.org/gp4/benchmark.php?
test=all&lang=all.

3For example, a blocking system call invoked from one thread blocks all other threads. Also, threads
cannot be spread over multiple cores on multi-core or multi-processor machines.

15

http://shootout.alioth.debian.org/gp4/benchmark.php?test=all&lang=all
http://shootout.alioth.debian.org/gp4/benchmark.php?test=all&lang=all

limitations of the underlying platforms (JVM or .NET, respectively). The reason
why Matz chose green threads is simple—portability. In mid-90’s many operating
systems did not offer reliable threading support, so the only portable option was to
implement threads in the user space.

• Garbage collector. Ruby uses a conservative mark-and-sweep garbage collector.
Due to its implementation, this garbage collector is not fork-friendly and forked
Ruby processes often will not share almost any memory after one of them executes
the garbage collection. This is very undesirable behavior.

Remedy to some of the often-criticized aspects of Ruby can be found in current develop-
ment version—the 1.9 branch.

Ruby 1.9 contains YARV —a new bytecode interpreter of Ruby replacing the original naive
tree walker. Its main goal is to speed up execution of Ruby programs. Initial benchmarks
indicate that the execution is generally 2× to 10× faster than Ruby 1.8.6. [11]

YARV compiles the Ruby source code into YARV instruction sequences, containing the
bytecode. This bytecode is quite high-level and is interpreted by the YARV virtual ma-
chine, which is a conceptually simple, but heavily optimized stack-based virtual machine.
YARV does not attempt to compile the bytecode into native processor instructions.

Ruby 1.9 also contains support for Unicode, implemented in quite general manner—every
string in Ruby program specifies its encoding (explicitly or implicitly) and the language
contains support for handling strings in all encodings in an uniform way. Many common
encodings are supported and strings can be converted between them.

Another problem remedied by Ruby 1.9 is threading—threads are implemented as native
threads instead of green threads used in previous versions of Ruby. However to simplify
the implementation, Ruby 1.9 uses a global interpreter lock, preventing simultaneous
execution of Ruby code.

Although Ruby 1.9 solves many of the problems of previous versions of Ruby, it is currently
considered as an unstable branch and released versions are not meant to be used in
production environment. The production-level version is expected in December 2008.

2.5.2 JRuby

The JRuby project [12] was started in 2001 with a goal to port Ruby language to the
Java platform, mainly to allow using code and libraries written in Java from Ruby and
vice versa.

At the beginning, JRuby was a straight port of the C implementation of Ruby 1.6 to
Java. It used the same method of executing Ruby code—traversing the abstract syntax
tree. Later, the implementation was upgraded to Ruby 1.8 and significantly enhanced.
By now, JRuby supports three modes of execution:

1. Interpretation

2. Ahead-of-time compilation of Ruby to Java bytecode

3. Just-in-time compilation of Ruby to Java bytecode

16

The result of the ahead-of-time compilation can be a standard Java .class file. The just-
in-time compiler implements advanced features such as decompilation and reoptimization
of the generated bytecode. According to one of the lead developers, JRuby is faster than
MRI 1.8 and sometimes even than MRI 1.9. [13]

JRuby supports full, two-way integration with underlying Java platform. The programmer
can call Java code and use Java libraries transparently from Ruby code executed by
JRuby, or execute Ruby programs from the Java code and interact with them. Beyond
obvious advantages in reusing existing code, this tight integration makes Ruby suitable
as embedded scripting language in Java applications.

JRuby is the most mature of all implementations beyond MRI. It is almost 100% com-
patible with Ruby 1.8.6 and it is capable of running Ruby on Rails applications. Most
obvious differences from MRI—a different threading model and absence of continuation
support—are forced by the limitation of JVM, which cannot emulate MRI’s green threads
and does not allow explicit call stack manipulation, required for implementing continua-
tions. In practice, these limitations are not significant and compatibility level is sufficient
for most real-world applications.

JRuby is open source and its development is currently backed by Sun Microsystems, who
hired two JRuby lead developers to work on JRuby full-time. The current development
aims mainly to enhance performance, real-world compatibility and to make the integration
with Java platform easier than it currently is.

2.5.3 IronRuby

IronRuby [14] is a port of Ruby onto Microsoft .NET Framework. It is developed by
Microsoft itself and it is implemented on top of the Dynamic Language Runtime (DLR,
a library on top of the Common Language Runtime, providing services useful for imple-
menting dynamic languages, such as dynamic type system, dynamic method dispatch and
dynamic code generation). The project is quite young, it was announced by Microsoft at
the MIX 2007 conference in April 2007. It is developed in a very unconventional way (for
Microsoft): as an open source project hosted on RubyForge (the server where most Ruby-
related projects are hosted), licensed under Microsoft Permissive License. Non-Microsoft
developers are allowed to contribute to the source code.

The primary motivation behind IronRuby is similar to the JRuby project—to enable code
sharing between Ruby and .NET platforms. It is possible to call libraries in the .NET
framework from Ruby code and also to interact with Ruby programs from the code written
in any other language supported by .NET/CLI infrastructure.

The implementation does not support all features of the Ruby language and most stan-
dard libraries are not yet implemented. However, an announcement at the RailsConf
2008 conference in May 2008 stated that IronRuby is able to run simple Ruby on Rails
applications.

2.5.4 Rubinius

In some aspects, the Ruby language is similar to Smalltalk. Common features include
similar object model (based on the idea of message passing and dynamic dispatch—the

17

object can decide at runtime, if and how it will handle incoming messages) and dynamic
nature of the language (almost anything can be inspected and redefined at runtime).
Most Smalltalk implementations are almost completely written in Smalltalk itself, the
only exception is usually a small virtual machine that runs the Smalltalk code. However
in Ruby world, things are different—most Ruby implementations are written in some
underlying language (C, Java, C#,. . .).

The Smalltalk implementation model inspired the Rubinius project [15], which began its
life as “Ruby in Ruby”. Most Rubinius code is written in Ruby, including most of the
core class library. The Ruby code is compiled into a bytecode by a compiler, which is also
written in Ruby. The bytecode is interpreted by a stack-based virtual machine written
in C.

The virtual machine implements several interesting features such as generational garbage
collection and direct threading (a technique, where the bytecode is modified in memory to
contain direct pointers to code implementing the opcodes instead of opcodes themselves,
avoiding a switch over the opcodes). In future, the virtual machine is intended to be
rewritten in a dialect of Ruby that would be used to generate the C code. Similar technique
was used in the Squeak implementation of Smalltalk.

Interesting fact is that Rubinius is compatible with Ruby 1.8 API using a special library.
This allows C extensions written for MRI to run in Rubinius after simple recompiling,
easing its real-world adoption.

Rubinius is currently under heavy development and supports most parts of the Ruby
language, library classes and methods. At the time of writing the most recently released
version was 0.9. Again, an announcement at the RailsConf 2008 conference in May 2008
stated that Rubinius is able to run simple Ruby on Rails applications. Production-level
version is expected to be announced within a few months.

2.5.5 Other Implementations

Implementations described in previous sections are generally relatively advanced and they
are able to run many real-world Ruby programs. All of them can run at least very simple
Ruby on Rails applications. Some of them are ready for deployment in production envi-
ronment (MRI, JRuby), the others are expected to be ready soon (IronRuby, Rubinius).

There are also several Ruby implementations that are not yet practically usable for various
reasons, mostly because they are at the beginning of their development cycle or because
they were abandoned by their creators in early stages. These implementations often
contain unconventional ideas, so let’s describe them shortly in the next paragraphs.

2.5.5.1 MagLev

MagLev [16] is a Ruby virtual machine based on S64, a Smalltalk virtual machine, de-
veloped by GemStone Systems. The project has two main goals: to significantly improve
Ruby performance and to enable Ruby to work in the distributed environment.

The usage of modified S64 machine for executing Ruby code was possible because Ruby
and Smalltalk share very similar semantics regarding the object model, a method call
dispatch mechanism and dynamic language features. Because the S64 is highly optimized

18

(a result of more than 20 years of its development), the speed of executed Ruby code
is significantly higher than the speed of the original Ruby implementation according to
MagLev authors (official benchmarks are not yet available).

Multiple virtual machine instances can be running simultaneously and share the global
state (e.g. global variables or class definitions), even when they are running on differ-
ent hardware machines. This is implemented by using an object cache that manages
synchronization of the objects between the instances and a storage mechanism that can
store the objects persistently and allows manipulation of very large data sets (in order of
petabytes). To implement the object sharing and synchronization, MagLev extends Ruby
with transactional semantics.

Using the MagLev object storage and sharing features, deployment of large Ruby on Rails
applications could be much simplified, because the only servers that need to be running
are MagLev instances (in typical large-scale Rails applications today, the web servers,
database servers and usually some cache server instances need to be running).

The MagLev project is fairly young (it was introduced at RailsConf 2008 in May 2008 as
a three month old project) and while it already runs WEBrick (a simple web server written
in Ruby), its support of Ruby is not complete. Precise current status of the project is
unknown and so are the details of its implementation, because the project is not developed
as open source. Despite that, being backed by a commercial entity, MagLev is expected to
improve quickly and it would not be surprising if an announcement of usable production
version appeared within several months.

2.5.5.2 MacRuby

MacRuby [17] is a port of Ruby to the Objective-C runtime, developed as an open source
project by Apple. The Objective-C runtime is the primary development environment on
Apple’s Mac OS X system. The main goal of MacRuby is painless integration with the
Cocoa Objective-C framework, allowing development of native Mac OS X applications in
Ruby. Similar integration was previously possible only via RubyCocoa bridge library [18]
for Ruby, but that library fails to overcome some of the differences between Ruby and
Objective-C environments, mainly in areas of object model, threading and garbage col-
lection. This leads to less than optimal programmer experience.

Similarly to other ports of Ruby to various platforms/frameworks, MacRuby allows two-
way integration between Ruby and Objective-C objects/classes. Many Ruby core classes
are implemented as descendants of standard Objective-C classes (for example, Ruby Array

is a subclass of Objective-C NSArray), so they can be used in Objective-C without any con-
versions or wrapping. The Ruby runtime can handle casual Objective-C objects without
any conversions, too. This design leads to conceptional simplicity and good performance
of calls spanning between both environments. MacRuby also uses threading support and
the garbage collector of the Objective-C runtime.

While most other implementations target Ruby 1.8.6, MacRuby aims to be compatible
with Ruby 1.9—the current development branch. As most real-world Ruby programs are
written for version 1.8, which is incompatible with 1.9 in many aspects, the practical
usability of MacRuby is limited.

19

2.5.5.3 XRuby

XRuby [19] is a compiler of Ruby to Java bytecode, producing standard Java .class

files. Its goal is similar to that of JRuby—to enable integration and code sharing between
Ruby and Java platforms. It is developed as an open source project by volunteers mostly
from China.

The obvious question is, why the XRuby project was started when similar project—
JRuby—had existed for quite a long time. According to Xue Yong Zhi, lead developer of
XRuby, the main reason was that JRuby was almost dead project in 2005. It supported
only old Ruby 1.6 and it was an interpreter, not a compiler. Creating a brand new project
made sense at that time. [20]

Instead of reusing the Ruby language parser from the C implementation like all other
implementations, XRuby implements its own parser using ANTLR tool. This parser is
cleaner than the original one and thus more easily maintainable.

The authors claim that in most benchmark tests, XRuby runs faster than the original
Ruby implementation. [21]

The fate of the XRuby project is very uncertain, since its developers participated mostly
in their free time and now they are either too busy, or employed to work on Ruby in
corporate world. Unless a new maintainer steps up, XRuby will probably fade away. [20]

2.5.5.4 Ruby.NET

Ruby.NET [22] is another (chronologically the first, actually) port of Ruby onto Microsoft
.NET Framework. It began its life in 2005 as a Microsoft-sponsored research project at
the Queensland University of Technology to study how well such a dynamic language like
Ruby maps to the .NET platform.

In 2007, when the IronRuby project was born, the Ruby.NET future began to be un-
certain. IronRuby used the Dynamic Language Runtime, which Ruby.NET could not
use at the time and basically needed to reimplement its features. Also, the authors were
primarily researchers and felt that Microsoft is in better position to produce a production-
level implementation. The developers finally decided that there is no need to have two
competing .NET Ruby implementations and ended the project. [23]

Some parts of the Ruby.NET project live on, because IronRuby used Ruby.NET lexical
scanner and parser in its source code.

2.5.5.5 Cardinal

Cardinal [24] is a compiler that converts Ruby code into bytecode of the Parrot virtual
machine. Parrot itself is a quite ambitious project, trying to create a virtual machine
that would allow to run various dynamic languages efficiently. In its current version, it
supports front-ends in various stages of maturity for many languages, including PHP,
Python, Perl, Lua, JavaScript, Scheme and—via the Cardinal project—Ruby.

The Parrot project is notorious for its long development time (the development started
in 2001, its current versions are still very unfinished and unstable), frequent architecture
changes and internal code rewrites. [25]

20

The Cardinal project reached only version 0.1, which was released in August 2004. This
version did not support most parts of Ruby, with very important parts (such as instance
variables and support for class reopening) missing. Currently the project appears to be
abandoned.

2.5.5.6 HotRuby

HotRuby [26] is a Ruby virtual machine written in JavaScript. It allows to run Ruby
code in the web browsers and Flash programs4.

HotRuby uses Ruby 1.9 to compile the Ruby source code into the YARV bytecode, which
is fed into a virtual machine written in JavaScript. The result is Ruby program running in
JavaScript environment. HotRuby contains supporting code and partial implementation
of the Ruby core class library in JavaScript, very similar to the PHP runtime in the Ruby
to PHP translator (see Chapter 4).

Of all Ruby implementations, HotRuby is the most similar to the translator, because
it translates Ruby into other dynamic language. However, HotRuby’s approach to the
task is very different—it uses a parser and bytecode compiler contained in Ruby 1.9 and
only implements the bytecode interpreter and supporting runtime code. This decision
allowed the author to avoid reimplementing the Ruby parser, but limited the input to
Ruby 1.9 programs. As most real-world Ruby programs are written for version 1.8, which
is incompatible with 1.9 in many aspects, the practical usability of the solution is limited.

There needs to be added that it was impossible to use the YARV bytecode interpreter
approach in the Ruby to PHP translator, even if this was desired, because Ruby 1.9 was
not stable enough when the implementation began. The HotRuby project was started
much later (in January 2008), when Ruby 1.9 bytecode interpreter was stable enough to
serve as a base for other work.

The HotRuby project is not practically usable at the time of writing and its future is un-
certain at best. Although it implements many Ruby constructs, it is not fully compatible
with Ruby 1.9 yet and it implements only a skeleton of Ruby core class library. Commits
to the source repository come only from one author and there was no activity since the
end of January 2008. The project looks abandoned.

2.5.5.7 IronMonkey

IronMonkey [27] is a project that aims to port IronRuby and IronPython (.NET Python
implementation) to the Tamarin JavaScript virtual machine. Tamarin was created by
Adobe and its code was recently donated to Mozilla and will be used as a basis of its
JavaScript interpreter in future versions of their products. The result of the IronMonkey
project could be a native, cross-platform implementation of Ruby and Python in the
Firefox web browser, enhancing a spectrum of languages available for client-side web
application programming.

The project is in its beginnings and no achieved results or implementation details have
been published so far.

4Flash uses ActionScript, a language based on JavaScript.

21

2.5.6 Summary

Despite being relatively young, the Ruby language is quite unique given the number of
its implementations. Why were so many of them created?

The purpose of several implementations is the integration with commonly used plat-
forms such as Java (JRuby), .NET (IronRuby) or Objective-C/Cocoa (MacRuby). These
implementations are generally conservative, emulate behavior of the original Ruby imple-
mentation closely and do not extend the Ruby language significantly (except MacRuby).
They are also limited by the platform limitations, resulting in different threading models,
absence of continuation support and other minor differences. They are backed by the
commercial vendors of the respective platforms, which ensures fast pace and continuation
of their development.

Other implementations try to remedy deficiencies in the original Ruby implementation,
and generally embrace Ruby’s Smalltalk heritage. Rubinius tries to rewrite Ruby core
in a fashion similar to Smalltalk implementation, MagLev is even using a real Smalltalk
virtual machine and adds distribution support to Ruby. The success of these implemen-
tations will depend heavily on their performance and on the success in solving perceived
MRI problems.

The rest of the implementations can be categorized either as duplicating efforts of other
projects (XRuby, Ruby.NET) or as experimental (Cardinal, HotRuby, IronMonkey). These
implementations are generally not practically usable and their future is uncertain (if they
are not abandoned already).

The number of failed or incomplete implementations suggest that creating an implemen-
tation of Ruby is not an easy task. The creator has to overcome the lack of the formal
specification and official language grammar, which requires reverse-engineering of the orig-
inal C implementation. To achieve real-world compatibility, an extensive core class library
has to be reimplemented. This library is only loosely documented, which again requires
understanding the functionality from the source code of the original implementation. The
net result is that implementing Ruby is quite an endeavor and only strong teams with
several developers working full-time or near full-time have a chance to succeed.

As a summary, Table 2.1 lists the reviewed Ruby implementations along with their basic
properties.

22

Name Purpose Platform Implementation Compatibility Rails Support License

MRI original implementation Windows, Unix-based systems 1.8: naive AST-walking interpreter; 1.9: bytecode-based
interpreter with a stack-based virtual machine

N/A yes GPL/Ruby

JRuby integration JVM interpreter/compiler into Java bytecode 1.8.6 yes CPL/GPL/LGPL
IronRuby integration .NET interpreter/compiler into CIL 1.8.6 partial MPL
Rubinius MRI rewrite Unix-based systems bytecode-based interpreter with a stack-based virtual

machine
1.8.6 partial BSD

MagLev MRI rewrite unknown interpreter unknown none unknown
MacRuby integration Mac OS X interpreter 1.9 none Ruby
XRuby integration JVM compiler into Java bytecode 1.8.5 none BSD
Ruby.NET integration .NET compiler into CIL 1.8.2 none BSD
Cardinal experimental unknown interpreter using Parrot infrastructure unknown none GPL/Ruby
HotRuby integration/experimental JavaScript/ActionScript compiler of YARV instruction sequences into JavaScript

representation + interpreter of that representation
1.9 none unknown

IronMonkey integration/experimental Tamarin unknown unknown none unknown

Table 2.1: Ruby implementation summary.

23

Chapter 3

Translator Design

The general translator architecture has been described in Section 1.2.

This section describes the rationale behind critical design decisions that had to be made
at the beginning of the translator implementation.

3.1 Implementation Language

It was decided to implement the compiler in Ruby.

The main reason for this decision is that Ruby is a very high level and elegant language,
which is pleasant to read and write. It does not distract programmers with low-level
operations such as memory allocation or pointer manipulation. This results in high speed
of development and less opportunities to introduce bugs. Absence of static typing allows
rapid changes without rewriting too much code. Also, the author does not deny his
fondness for Ruby.

Another important reason for writing the compiler in Ruby was a theoretical possibility
of implementing the eval function.1 Its implementation requires presence of the Ruby
compiler at runtime, therefore it requires the compiler to be available in PHP. This can
be achieved either by writing the compiler directly in PHP, or by writing it in Ruby and
using it to compile itself into PHP. When choosing between Ruby and PHP, all other
considerations being equal, Ruby is a clear winner.

The choice of Ruby as an implementation language enabled better separation of concerns
in the implementation, than would be available in other languages with the same amount
of code. For an example, see Section 5.1.3.

Use of Ruby as an implementation language has a negative impact on the compiler speed
because Ruby is quite slow compared with e.g. C or Java. This is justified by the gains
in development speed and future source code modifications. Also, the translator would
not be run very often by the user, so the lower compilation speed is not as critical as in
conventional compilers.2

1The eval function takes a string and interprets its contents as a Ruby expression, which is evaluated.
2In the original “Rails in PHP” use-case described in the introduction, the compiler would be run

only once before each application deployment.

24

3.2 Supported Ruby Subset

The translator supports only limited subset of the Ruby language. When selecting the
implemented parts of the language, the emphasis was put on language elements which are
used most often in casual Ruby programs or which are typical for the Ruby language. The
implementation therefore contains support for most Ruby control-flow constructions, the
whole object system, method dispatch mechanism and blocks. Unimplemented features
are mostly those which could be emulated by implemented constructs, which are not used
very often, or which were hard to implement.

Because Ruby implements many features in its core class library, it was necessary to
implement many classes from it. The criteria for choosing what to implement were similar
to the criteria used when choosing language elements.

During the whole implementation, maximum compatibility with Ruby 1.8.6-p114 was
maintained. This is the version that most other Ruby implementations target as well.

Detailed overview of implemented language features and parts of the core class library
can be found in Appendix B.

3.3 Supported PHP Version

The translator supports both PHP 4 and PHP 5 as a target language, by emitting PHP 4
code which is designed to work also with PHP 5. The decision to support PHP 4 was made
at the beginning of the implementation, when PHP 4-only hostings were quite common.
Even in summer 2008, PHP 4 is still widely used and the compiler support for the old
PHP version is useful.

The decision to support PHP 4 resulted in several implementation difficulties, mainly
in the area of object references (see Section 4.1) and implementation of exceptions (see
Section 4.7).

With PHP 5 hostings becoming generally available and PHP 4 soon to be officially unsup-
ported, it may be reasonable to drop PHP 4 support, should the translator be developed
further.

3.4 Optimization

The Ruby language is rather difficult to optimize correctly. For example, consider a snip-
pet of very trivial Ruby code in Listing 3.1.

Listing 3.1: Ruby program printing result of a simple addition.

print 1 + 2

In many languages, even the simplest compiler would probably apply constant folding
optimization and substitute literal value 3 for the printed expression. However in Ruby,
the + operator is in fact a method call on its left operand. And because Ruby allows
method redefinitions at any time (even for built-in objects such as numbers), few lines of

25

code from Listing 3.2 inserted before the code in Listing 3.1 would cause the optimization
to yield invalid result.

Listing 3.2: Ruby program redefining the + method of the Fixnum class.

class Fixnum

def +(other)

self - other # Redefine addition as subtraction.

end

end

Implementation of such a basic optimization as constant folding would require either
disallowing certain operations (such as redefinition of methods on built-in objects), which
is impractical for the language users, or a complicated control-flow analysis determining
if the method was in fact redefined or not. And even this control-flow analysis would be
useless at the moment user uses the eval function with dynamically created parameter.3

The same problems would appear if the code was translated to PHP directly, i.e. if the
Ruby + operator was rewritten to PHP + operator. The only reliable way to translate
the snippet above correctly is to use functions emulating method calls on numbers (the
emulation is needed because numbers are not objects in PHP and no methods can be
called on them). The approximation of the PHP code produced by the translator is
shown in Listing 3.3.4

Listing 3.3: Code from Listing 3.1 compiled into PHP.

r2p_call(r2p_self(), ’puts’, r2p_call(1, ’+’, 2));

Situations similar to the one just shown appear at many places in the Ruby language.
Thus, it was chosen to refrain from significant optimizations in the compiler and aim
mainly for correctness and robustness. As a result, many Ruby syntax elements are
not naively translated into their corresponding PHP counterparts, as they do not have
identical behavior in all cases. This is described in more detail in later chapters.

3.5 Integration with PHP

When the Ruby code is translated into PHP, it is natural to ask whether it is able to
cooperate with the surrounding PHP environment and similarly if the PHP code is able
to interact with the translated Ruby program. The translator was not written with this
goal specifically in mind (its main motivation was running whole Ruby applications on
PHP webhostings, not code sharing and interaction), however certain degree of interaction
between PHP and Ruby worlds is possible.

Next two sections demonstrate using Ruby code from PHP and also using PHP code from
a compiled Ruby program.

3There is a third option: detect the method redefinition at runtime and rewrite the optimized code
dynamically to an unoptimized version. While feasible in an interpreter or a virtual machine, this
approach is impossible to use in a pure compiler.

4The exception handling code was omitted and existence of multiple method call emulating functions
was hidden for simplicity.

26

3.5.1 Using Ruby Code in PHP

Compiled Ruby programs can be embedded into larger PHP applications just by including
the compiled PHP code and the translator’s PHP runtime (see Chapter 4).

When interacting with the compiled code or the PHP runtime, care must be taken to use
wrapper classes and functions—for various reasons, most Ruby objects are not translated
directly into equivalent PHP objects (see Section 4.1).

In Listing 3.4, a PHP code uses the translator’s implementation of Ruby String and
Array classes to join several strings using a separator and print the result.

Listing 3.4: PHP program working with Ruby objects.

<?

/* Include the translator’s PHP runtime. */

include "runtime/lib/r2p.php";

/* Create three Ruby strings. */

$s1 = r2p_string("Alice");

$s2 = r2p_string("Barbara");

$s3 = r2p_string("Cindy");

/* Put them into a Ruby array. */

$a = r2p_array($s1, $s2, $s3);

/* Call a "join" method on this array specifying a separator. */

$joined = $a->ref->join(r2p_string(" and "));

/* Print the joined strings ("Alice and Barbara and Cindy"). */

echo $joined->ref->get_value();

?>

3.5.2 Using PHP Code from Compiled Ruby Programs

Compiled Ruby code can use the surrounding PHP code, however that code must be
wrapped into classes/methods compatible with translators’ PHP runtime.

In Listing 3.5, a PHP implementation of the Euclidean algorithm that finds the greatest
common divisor of two numbers is wrapped into a method gcd in Ruby class Algorithms.
This class can be used from the compiled Ruby code—see Listing 3.6.5

5In real world, this particular functionality would be more appropriately implemented inside a module,
not as an instance method of a class. But the PHP code showing this would not be as simple.

27

Listing 3.5: PHP program wrapping existing function into a class usable from compiled Ruby code.

<?

/* Include the translator’s PHP runtime. */

include "runtime/lib/r2p.php";

/* Original PHP function (parameter checking omitted). */

function original_gcd($a, $b) {

while ($a != $b) {

if ($a > $b) {

$a -= $b;

} else {

$b -= $a;

}

}

return $a;

}

/* Wrapper class. */

class Algorithms extends R2PClass {

function gcd($a, $b) {

return original_gcd($a, $b);

}

function Algorithms() {

global $R2P_OBJECT_CLASS;

parent::R2PClass("Algorithms", $R2P_OBJECT_CLASS,

$R2P_OBJECT_CLASS);

$this->_define_public_methods_from_php_functions(

array("gcd", 2)

);

}

}

/* Create the class instance. The Ruby code knows about the class

from this point. */

$R2P_ALGORITHMS_CLASS = new R2PRef(new Algorithms());

?>

Listing 3.6: Ruby program using the Algorithms class from Listing 3.5.

print Algorithms.new.gcd(15, 25) # Prints "5"

28

Chapter 4

PHP Runtime

The PHP runtime is a PHP code that supports compiled Ruby programs while they are
running. It consists mainly of the core class library implementation and code supporting
the compiler-generated code and runtime operations. The reasons for its existence are
outlined in Section 1.2.

The design of the PHP runtime is tightly coupled to decisions how to map certain Ruby
language constructs to PHP. Therefore, these decisions are described along with the run-
time itself and the PHP runtime is also described before the compiler. Only the most
important mappings are described here, more detailed description can be found in Sec-
tion 5.2.3.

The PHP runtime itself is divided into two parts:

1. Low-level support for the compiler-generated code and runtime operations

2. Implementation of the core class library

The first part is scattered in files in the /runtime/lib directory. Code of the second part
can be found in subdirectories classes, modules and objects.

Note that these two parts are very tightly coupled. This is necessary because in Ruby, a lot
of functionality is implemented in the core class library that would be usually implemented
directly in the language core in more conventional languages. Thus, the core classes need
to access the language runtime.

The PHP runtime is object oriented (as far as compatibility with PHP 4 allows). Some
parts of the runtime were impractical to implement in OOP way; these are usually im-
plemented procedurally. This concerns mainly functions used by the compiler-generated
code, but there were also many cases where the OOP could not be used because the Ruby
objects are not always represented as PHP objects in PHP (see Section 4.1.2).

All globally visible PHP runtime identifiers are prefixed with r2p or R2P prefix and cer-
tain identifiers with internal usage are prefixed with r2p or R2P prefix. The prefixes
supplement namespaces which are not available in PHP.1

1Namespaces will be available in PHP 5.3.

29

4.1 Ruby Object Representation

The most important decision in the PHP runtime design was how to represent Ruby
objects. To explain this decision, it is necessary to discuss the representation of objects
in the original Ruby implementation first.

4.1.1 Ruby Object Representation in MRI

All values in the original Ruby implementation are internally stored in the VALUE type,
which is just a typedef for unsigned long. For objects of classes NilClass, TrueClass,
FalseClass, Fixnum and Symbol, the VALUE contains immediate data of the object (ob-
jects of those classes are called immediate values). For objects of other classes, the VALUE

stores a pointer to a structure with additional data (these are called referenced values).
The exact type of the structure depends on the object class. This scheme optimizes
handling of numbers and few other special values, saving heap allocations and pointer
dereferences.

The implementation takes advantage of the fact that on modern architectures pointers are
aligned at least on word boundaries and generally do not point to very small addresses,
so there is a room to embed additional information into them. This information is used
to distinguish between the immediate value and pointer case.

The interpreter determines the class of object stored in the VALUE using the following
algorithm:

1. If the least significant bit of the VALUE is set to 1, the stored object is a Fixnum. Its
value can be obtained by shifting the VALUE right by one bit.

2. Otherwise, if the eight least significant bits of the VALUE are equal to 0x0E, the
stored object is a Symbol. Its ID can be obtained by shifting the VALUE right by
eight bits.

3. Otherwise, if the VALUE is equal to 0, the stored object is false (the only instance
of FalseClass).

4. Otherwise, if the VALUE is equal to 2, the stored object is true (the only instance
of TrueClass).

5. Otherwise, if the VALUE is equal to 4, the stored object is nil (the only instance of
NilClass).

6. Otherwise, the VALUE stores a pointer to a structure with additional information.
The object’s class can be determined using the structure’s klass member, which is
always present in the structure at a fixed offset.

When assigning variables, passing parameters to methods or blocks and obtaining return
values, the Ruby interpreter internally just copies the VALUE around. This means that
the immediate values have pass-by-value semantics, as all their data is stored directly
in the VALUE. All other objects have pass-by-reference semantics, as only a pointer to

30

their data is stored in the VALUE and no deep copying is performed. However in reality,
this distinction in the passing semantics is irrelevant because all immediate values are
immutable by design. The user has no way to determine if the immediate value was
copied or not.

4.1.2 Ruby Object Representation in PHP Runtime

In PHP, all values are of eight different types: boolean, integer, float, string, array,
object, resource and NULL. The Ruby classes are mapped to PHP types according to
Table 4.1.

Ruby Class PHP Type

NilClass NULL

TrueClass boolean

FalseClass boolean

Fixnum integer

other object

Table 4.1: Mapping of Ruby classes to PHP types.

With an exception of Symbol, which has no PHP equivalent, immediate values are mapped
to their corresponding PHP types and all other objects to PHP object. This corresponds
to storing the data directly in the VALUE for immediate values and storing a pointer to
additional data for other objects in the original Ruby implementation. The only difference
is that the PHP type system is used to distinguish between the cases instead of low-level
bit manipulation.

The chosen mapping has several advantages:

• It is very close to the scheme used by the original implementation, so code in the
PHP runtime duplicating parts of the Ruby interpreter can be written in the same
way.

• Manipulation with Fixnums is fast.

• Ruby booleans are identical to PHP booleans and Ruby nil is identical to PHP
null, which simplifies the PHP runtime code.

• Most Ruby objects are PHP objects. Given that PHP supports object-oriented
programming, this is a natural mapping which simplifies the PHP runtime code
and more importantly makes the interaction with the compiler-generated code from
PHP quite natural.

Several other Ruby classes (namely Float, String and Array) could have been mapped
to their corresponding PHP types, too. However, this mapping would have no significant
advantages, it would deviate from the original Ruby implementation model and introduce
many special cases in the PHP runtime code. Therefore, these classes were mapped to
PHP objects.

31

4.1.2.1 Pass-by-value vs. Pass-by-reference Problem

In PHP 4, all values are passed by value when assigning, passing as parameters, etc.2

Passing by reference can be generally enforced using the & prefix operator, but this choice
is made statically—either all values on given place will be passed by value, or by reference.
This conflicts with Ruby dynamic behavior, where the used passing mechanism depends
on the object class. This mechanism is not possible to implement directly in PHP 4 and
workaround had to be invented.

The pass-by-reference mechanism in Ruby works because in the original implementation
a VALUE contains a pointer to additional data, not the data itself, and only that pointer
is copied when passing the value around. This is emulated in PHP by wrapping all non-
immediate values into a small R2PRef proxy class. This class contains no methods except
the constructor and only one attribute: ref. This attribute is a PHP reference pointing
to the actual object. When passing a value, the R2PRef instance itself is always copied
by PHP, but since the copying is shallow, the reference in its ref attribute still points to
the same object, resulting into pass-by-reference semantics for the referenced object.

The wrapping and unwrapping of objects causes a (very slight) performance degradation
and makes the PHP runtime code a bit longer. This is a low price to pay for the correct
value-passing semantics.

Note that in PHP 5, objects are always passed by reference. The described problem
disappears here by itself, because Ruby objects represented by PHP object are exactly
those with pass-by-reference semantics in Ruby. The PHP runtime code uses the R2PRef

proxy object in PHP 5 anyway—the opposite would require two versions of many PHP
runtime parts with obvious implications on the code size and complexity. As a result,
the PHP runtime code must be carefully constructed not to rely on the pass-by-value
vs. pass-by-reference semantics for PHP objects, so it is able to run in both PHP 4 and
PHP 5.3

4.2 Implementation of Ruby Objects

As mentioned in the previous section, most Ruby objects are directly mapped to PHP
objects. All PHP objects representing the Ruby ones are instances of R2PObject class or
one of its descendants.

In principle, instance variables of Ruby objects could be stored in attributes of PHP
objects. However the runtime implementation uses several attributes for its own purposes
(at least $id and $class) and a conflict would arise if the translated Ruby program
wanted to use those names. Rather that reserving certain attribute names or inventing
some escaping scheme, the instance variables are stored in an associative array in the
$instance vars attribute. The disadvantage is a need to use a wrapper functions in the
generated code to access these attributes instead of direct attribute access.

2In fact, the situation is more complicated—PHP employs copy-on-write semantics on all the values
for performance reasons. But this is transparent to the user.

3This is true for all code which needs to run in both PHP 4 and PHP 5 in general.

32

4.2.1 Object Identity

All Ruby objects have an integer ID, which is unique for the lifetime of the object and
can be obtained by calling the object id method.

In the original Ruby implementation, immediate values derive their ID directly from their
value and other objects use a value derived from a pointer to their data. PHP lacks
similar object identity mechanism and the absence of pointers precluded its implementa-
tion in the same way as in the original Ruby implementation. The object identity was
implemented simply by including an $id attribute into each R2PObject instance. This at-
tribute contains the object ID and it is assigned in the constructor. The IDs are assigned
sequentially using a static counter.

The disadvantage of this mechanism is its predictability. If any Ruby program relies on
the fact that object IDs are essentially random for non-immediate values and generally
different on each program invocation, it may stop working properly when translated by
the translator. However, such a reliance would be a bad practice because the randomness
of IDs is not guaranteed.

4.3 Classes and Modules

4.3.1 Classes

Classes in PHP are very similar to classes in other common languages, but Ruby classes
are somewhat unusual and contain several uncommon features:

• Ruby classes are normal objects with attributes, methods, etc. that can be accessed
by the programmer at runtime. This is not true in PHP.

• The corollary of the previous fact is that Ruby classes can be dynamically created,
copied, deleted, etc. None of this is possible in PHP (without resorting to “hacks”
using the eval function).

• Ruby code is present inside Ruby class definitions—the class definitions only change
the context in which the code runs. No similar capability exists in PHP class
definitions.

• In Ruby, classes themselves are highly flexible. Methods can be added, changed,
aliased and deleted at runtime. The same holds for constants and class variables.
Class definitions can be reopened long after initial creation of the class. Finally,
modules can be included at any time—which technically changes the inheritance
chain during the execution of the program. None of these operations are possible
with PHP classes.

The difference between Ruby and PHP classes is so huge that Ruby classes cannot be
directly mapped to PHP ones and have to be emulated entirely by using PHP objects.

Ruby classes are translated into instances of R2PClass class. They store a class name,
list of constants, class variables and methods—all implemented as PHP associative arrays

33

mapping names to values (in case of constants and class variables) or objects containing
additional information (in case of methods). Classes also contain a reference to their
superclass in the $superclass attribute. Each object has a reference to its class in the
$class attribute.

The beginning of the class definition is translated into a PHP runtime call which sets
a proper scope and creates a new R2PClass instance (in case the class is new) or finds
an existing one (in case the class is reopened) and sets is as an active class.

The end of the class definition is translated into a PHP runtime call which restores the
previous scope and active class.

4.3.2 Modules

As modules are essentially non-instantiable classes, the module definitions are translated
in a very similar way as classes. The only difference is that modules are represented as
instances of the R2PModule class in the PHP runtime and they do not have a superclass.

4.3.3 Implications

The emulation of Ruby classes using PHP objects makes it impossible to use PHP mech-
anisms for inheritance, method dispatch and constant storage. These had to be emulated
entirely.

4.4 Variables

In Ruby, there are five types of variables: local, global, instance and class variables and
constants. Local variables are limited in scope to the current method or class definition.
Global variables can be accessed in the whole program. Instance variables are attributes of
object instances, class variables and constants are attributes of classes (the main difference
between them is that constants generate a warning when changed).

While all those variable types have their counterparts in PHP, they could not be mapped
directly into them for various reasons. Those reasons and the mapping solutions are
described in the following sections.

4.4.1 Local Variables

While similar, local variables in Ruby and in PHP have two important differences:

1. In Ruby, local variables can be used inside methods, at the top level, or inside class
or module definitions. In PHP, they can only be used inside functions or methods.
They would become global variables at the top level and no executable code is
allowed inside class definitions in PHP.

2. Access to an undefined variable raises an exception in Ruby. Behavior of PHP is
somewhat surprising—a default value is used (depending on the context, it may be
false, 0, "" or array()) and an E NOTICE level error is generated.

34

To accommodate these differences, the local variables were implemented independently on
the PHP ones using a stack of associative arrays mapping variable names to their values.
Items are pushed on this stack whenever new local variable scope is created and popped
from the stack whenever it is closed. The stack is accessed via wrapper functions, which
raise correct Ruby exception when necessary.

4.4.2 Global Variables

Compiling Ruby global variables to PHP global variables would require to emit global

statement at the beginning of each PHP function in the compiler-generated code. How-
ever, global variables can be dynamically created and the static global statement cannot
make newly created variables visible.

Also, some Ruby global variables are virtual—accessing them invokes a getter or a setter,
which usually does some work or checks in addition to retrieving or setting the variable
value. There is no such facility available for PHP global variables.

Those two reasons led to a decision to store all Ruby global variables in one PHP global
variable, which contains an associative arrays mapping variable names to their values.
The array is accessed via wrapper functions, avoiding any global statements (these need
to be present only in the wrappers). The wrappers also handle virtual global variables.

4.4.3 Instance Variables, Class Variables and Constants

Because several attributes in R2PObject, R2PModule and R2PClass are used for imple-
mentation purposes, instance variables, class variables and constants are stored in special
instance attributes containing associative arrays mapping variable names to their values.
The arrays are again accessed via wrapper functions. Besides simplifying the generated
code, these functions also implement correct variable lookup semantics, which is quite
complicated in case of class variables and constants in Ruby.

4.5 Methods

In Ruby, classes and modules can have methods, but there is no concept of standalone
functions. Top level functions that look like them are in fact methods of the class Object.
On the other hand, PHP supports both functions and methods. Thus, the natural map-
ping of Ruby methods seems to be a conversion into PHP methods.

Sadly, this straightforward mapping cannot work by itself. As noted in Section 4.4, Ruby
classes and modules are not implemented as PHP classes, but as objects with a list of
method names and other properties. No PHP class is created when Ruby class or module
definition is encountered. It makes no sense to implement Ruby methods as PHP methods,
because they would not have any class to be in.

However, the implementation of core library classes and modules classes would benefit
from the implementation of Ruby methods as PHP methods. Ruby core library classes
and modules are implemented as objects of certain PHP classes (see Section 4.8.2) and it

35

would be useful to allow those classes to define PHP methods which would be available
both to the PHP code and to the translated Ruby code.

These conflicting needs were solved by allowing the Ruby methods to be represented both
as PHP functions and PHP methods. The record corresponding to given Ruby method in
the class method list indicates the type of implementation. The implementation of Ruby
methods as PHP methods is generally used only by the core library classes and modules;
the compiler always translates casual Ruby methods into PHP functions.

4.5.1 Method Information

As mentioned in Section 4.3.1, each PHP object representing a Ruby class or module
contains a list of its methods. This list is implemented as an associative array, mapping
method names to R2PMethodInfo objects with information about the method. The in-
formation stored are the method implementation type (function or method), visibility
(public, protected or private), number of parameters allowed (minimum and maximum)
and the name of the PHP function implementing given method (or an array with a refer-
ence to a Ruby class object and a method name in case of method implementation).

4.5.2 Invocation

When a method is invoked in Ruby, the runtime looks into the class of the receiver and
tries to find the R2PMethodInfo object corresponding to the method. The algorithm used
follows the Ruby semantics (if the method is not found, the superclass is searched, then
its superclass,. . . ; method missing is finally called if the method is not found) and it
bypasses the PHP method dispatch mechanism entirely.

If the method information is found, the method visibility is checked and actual parameter
counts are compared with the counts specified in the R2PMethodInfo object, potentially
raising an exception if one of the checks fails.

Finally, if the checks do not find any problem, the method is called using call user -

func array function. Usage of this function combined with a suitable format in which
the implementation location is stored in the R2PMethodInfo object allows to easily call
Ruby methods implemented both as PHP methods and as PHP functions. If the method
is implemented as a function, a parameter representing self is prepended just before the
call is executed.

The chosen method dispatch mechanism has a disadvantage that for one Ruby method
call, many PHP calls are required, mostly to various internal functions handling the
dispatching. Emulated Ruby method calls are therefore slower than the PHP ones. On
the other hand, the mechanism exactly matches the semantics of Ruby method calls.

4.5.3 Parameters

The translator supports positional and rest parameters in Ruby method definitions and
calls. During a method call, the actual parameters are packed into an array and that array
is later passed to call user func array function, which substitutes them into formal
parameters of the called PHP function or method internally. This calling convention

36

means that Ruby parameters are exactly translated into PHP parameters, which simplifies
both the PHP runtime and the compiler-generated code.

In Ruby, actual parameters are treated like local variables assigned to at the beginning
of the method. Because PHP local variables are not used to emulate Ruby local variables
directly, the formal parameter declaration is omitted in the compiler-generated func-
tions that implement Ruby methods and instead the local variables are assignged in the
r2p method enter function, called at the beginning of each PHP function representing
a Ruby method. This function has knowledge about names and structure of the formal
parameters and retrieves the actual values using func get args PHP function.

4.5.4 Stack

The parameters of compiled Ruby methods are passed using PHP native stack. However,
the implementation needs to store more information about method calls than the PHP
stack can accommodate: receiver of the method, method’s Ruby name, its lexical parent
(i.e. class it was defined in) and a passed block.

The PHP runtime stores this information on an additional stack, parallel to the PHP one.
Frames of this stack are instances of R2PStackFrame, or more precisely of its descendants
R2PMethodStackFrame and R2PBlockStackFrame. The first one is used for method calls,
the second one for block invocations. The stack is stored in a global variable and it is
maintained by the functions which wrap method calls and block invocations. The PHP
runtime code does not need to care about this stack until it needs information stored
there.

4.6 Blocks

Ruby blocks can be considered anonymous functions with closure properties. Because
creating anonymous functions is very inconvenient in PHP4, blocks are translated into
named functions. The information about block’s PHP function name is stored on the
stack when a method associated with the block is called.

When invoking a block, information about its associated PHP function is found on the
call stack and this function is called. All parameters are passed in a similar way as when
calling a method, however the block PHP function handles them differently than a PHP
function of a method—the parameters are assigned into variables directly in the body
of the function. This behavior is enforced by richer parameter options for blocks (quite
surprisingly, blocks can have any kind of variable as a parameter, even globals).

4.7 Exception Handling

Ruby contains support for exceptions, but PHP 4 lacks such feature. To make exceptions
in translated programs work, the PHP runtime has to emulate them.

4The only method is to use the create function function and pass the function body as a string.

37

When devising suitable emulation mechanism, the original Ruby implementation was
searched for inspiration, because the C language also does not have exception facilities.
It was found that exceptions are emulated using setjmp/longjmp mechanism, which is
not available in PHP.

Two options remained—to emulate the exceptions using special value returned from func-
tions or with a global variable containing the currently raised exception. (The second ap-
proach is possible because in Ruby only one exception can be raised at any given time.5)
In both cases, the exception status needs to be checked after all PHP runtime function
calls or other operations that could potentially raise exceptions.

It was decided to proceed with the second option—a global variable. It introduces more
global state into the runtime, but it seems cleaner than overriding the return value. With
good encapsulation, the code checking the global variable can be cleaner than the code
checking the return value. This mechanism is also more compatible with original Ruby
implementation.

The PHP runtime uses two global variables for its exception-emulation mechanism: one
contains a reference to a currently raised exception and another contains a boolean flag
indicating whether there is an exception in need of handling. The PHP runtime code does
not manipulate these variables directly—it handles them using wrapper functions.

The code of the PHP runtime and the compiler-generated code checks the exception flag
after each operation that may raise an exception and reacts appropriately (most typically
by immediate return from the current function). The exception handler also checks this
flag and if it handles the exception, it clears it together with the currently raised exception
variable.

If the exception is not caught in the program and reaches to the top level, it is handled
by a top level exception handler function, which displays the exception class and message
and terminates the program.

Note that PHP 5 supports exceptions, which could have been used to emulate Ruby
exceptions quite easily. However, the PHP 4 compatibility precluded this.

4.8 Core Library Classes and Modules

Large part of the PHP runtime consists of the Ruby core class library implementation in
PHP. To explain how its classes and modules are implemented, it is necessary to discuss
implementation of the core library in the original Ruby implementation first.

4.8.1 Core Library Classes and Modules in MRI

In the original Ruby implementation, core library classes (such as String or Array) are
implemented in C and they are internally represented as C structs (such as RString or
RArray). These structs contain members storing necessary instance data (such as string
characters or array items) in addition to data common for all objects (pointer to its class
and its instance variables).

5More precisely, only one exception can be raised at any given time in one thread. However this
distinction is irrelevant, because the translator does not support threads.

38

Methods of the core library classes are implemented as normal C functions with additional
parameter of the VALUE type representing self. There is a mechanism to translate Ruby
method calls into the native C calling convention.

If a user creates a class derived from a built-in core library class, it will be internally
stored in the same struct as the base class. This ensures that methods from the base class
used in the the derived class have access to all base class instance data.

4.8.2 Core Library Classes and Modules in PHP Runtime

In the PHP runtime, PHP classes derived from R2PObject are used for implementation
of Ruby core library classes. Their instance data is stored in the instance attributes.
Inheritance is used to match relations between the classes on the Ruby side. Methods
of the core library classes are implemented as methods of the implementing PHP classes
(see the discussion in Section 4.5).

If the user creates a class derived from a built-in core library class, it will be internally
stored in the same PHP class as the base class. Like in the original implementation, this
ensures that methods from the base class used in the the derived class have access to all
base class instance data.

39

Chapter 5

Compiler

The compiler consists of three parts:

1. Parser, which scans the Ruby source code and builds its in-memory representation
in the form of abstract syntax tree (AST).

2. Transformer, which operates on the Ruby AST and transforms it gradually into
an AST representing the equivalent program in PHP.

3. Serializer, which serializes the PHP AST into PHP source code.

The important architecture decision was to separate the transformer and the serializer,
so that the transformation operates entirely on the AST level. The alternative would be
to emit the PHP source code directly from the Ruby AST, but this would most probably
result in fragile and duplicated code.

The following sections describe the compiler parts in more detail.

5.1 Parser

5.1.1 Problems with Parsing Ruby

The Ruby language is difficult to parse. It offers a rich and flexible syntax, which is
convenient for the programmer, but it contains many features and irregularities that
make it hard to process. Consider the example in Listing 5.1.

Listing 5.1: Ruby program using string interpolation.

a = 5

b = 6

print "#{a} + #{b} = #{a+b}" # Prints "5 + 6 = 11".

This example uses Ruby feature called string interpolation. When a programmer inserts
a #{...} sequence into appropriate kind of string literal, the ... part (which can be

40

any Ruby expression1) gets evaluated and the result is substituted in the string. This
substitution happens at runtime, whenever the value of the string literal is evaluated.

Because the #{...} sequence can contain any Ruby expression, it can even contain other
Ruby strings, which can again be interpolated. In other words, string interpolation can
be nested recursively—see Listing 5.2.

Listing 5.2: Ruby program using nested string interpolation.

print "#{"one plus one is two: " + "#{1 + 1}"}"

For the Ruby parser writer, this means that string literal parsing is not a matter of lexical
analysis (like in most languages). Instead, it has to be done on the syntax analysis level,
so the parser can check proper nesting and recursively invoke itself to parse the embedded
subexpressions.

The example shows just one occurrence of this problem; there are more similar situations
in the Ruby grammar. The result is that the language grammar has to contain more
detailed information than in other common languages and the Ruby lexer has to have
a bit unusual structure (often emitting somewhat strange tokens such as “beginning of
the interpolated string”).

Another important Ruby trait its that its lexer needs to keep a lot of state between parsing
subsequent tokens. One example is parsing of the END directive, which can mean the
end of the source code (when occurring at the beginning of the line) or a casual identifier
(when occurring anywhere else). This and other similar ambiguities require the lexer
to keep extensive state information to distinguish the ambiguous cases, which prevents
implementing the lexer as a simple state automaton that parses tokens independently.

In fact, the situation with Ruby lexical analysis is even more interesting. The flexibility
of the language causes identical constructs to have different meaning in various contexts.

For example, method names can be reserved words. To allow this, reserved word recogni-
tion in the lexer needs to be turned off when a method name is expected in the grammar.
But the decision to turn off reserved word recognition cannot be done by the lexer alone,
because it requires information from the parser about the context where the lexing hap-
pens. As a result, the lexer and the parser cannot be independent, but have to cooperate
quite intimately. From a perspective of a programmer accustomed to the fact that the
lexer is independent of the rest of the parser, this is very disappointing.

The last problem with parsing Ruby is that the language grammar lacks formal description
and its only definition is the original Ruby implementation. Creating any tool that needs
to deal with Ruby programs requires extensive study of the Ruby implementation and
inferring the grammar rules directly from the source code of the original Ruby parser.

5.1.2 Parser Implementation

Rather than inferring the Ruby grammar from the Ruby parser source code and creating
a parser from scratch, which (considering problems illustrated in Section 5.1.1) would be

1Or, more precisely, a sequence of Ruby statements. This distinction is irrelevant in the context of
the Ruby parsing discussion.

41

a huge task with uncertain result, it was decided to emulate the Ruby parser behavior
and it was basically rewritten from C to Ruby.2

To write the parser, Racc [28]—a parser generator for Ruby very similar to classical
C language parser generator Bison—was utilized.3 The similarity to Bison allowed to
retain the structure of the original Ruby parser, which is written using it. The grammar
rules were almost exactly copied from the original parser, but the semantic actions are
different—they generate a cleaner and more object-oriented form of AST than the original
implementation. The parser is encapsulated into its own class (R2P::Parser::Parser).

The lexer is a direct rewrite of the original Ruby lexer, which was written by hand
and communicates with the parser using several global variables. To avoid introduction
of a global state into the lexer implementation, the lexer was encapsulated into its own
class (R2P::Parser::Lexer) whose attributes were used to communicate with the parser.
Thus, a better lexer–parser separation was achieved than in the original implementation.

5.1.3 AST Representation

Nodes of the translator’s AST are classes representing various types of syntactic elements
found in the language. All classes are descendants of AST::Node class, which defines
common behavior.

Because class definitions are open in Ruby (so the programmer can for example add or
redefine methods at any point after the class creation), the chosen representation allowed
to add behavior to AST classes in other parts of the translator, leading to the separation of
concerns. This is used in the transformer and serializer, where methods for transformation
and serialization of the nodes are attached to the classes in separate files—nicely grouped
together at one place. In less flexible languages, the visitor design pattern [32] would have
to be used to achieve the same level of separation, requiring certain amount of boilerplate
code.

5.2 Transformer

The transformer operates on the Ruby AST and transforms it gradually into an AST
representing the equivalent program in PHP. Because PHP is a high level language, this
transformations is direct and no intermediate representation is used beyond the Ruby and
PHP syntax trees.

In cases where there are equivalent constructions in both languages, the transformation is
very straightforward with one node in the Ruby AST translated into one node in the PHP
AST. However since Ruby is much more expressive than PHP, quite often the behavior
of one Ruby language construct must be emulated by a series of PHP constructs and/or

2Creators of all alternative Ruby implementations whose source code is available did exactly that and
rewrote the original parser to their implementation language. Only XRuby developers attempted to write
Ruby grammar in ANTLR.

3Other Ruby parser generators were briefly evaluated, namely rbison, rockit [29], Coco/R [30] and
ruby-yacc [31]. Sadly, each of them had serious issues (e.g. missing documentation, bad error handling
or dependencies on other software) that prevented its usage.

42

calls into the PHP runtime. In these cases, one Ruby AST node is typically translated
into multiple PHP AST nodes.

The following sections discuss the transformer design and describe how Ruby language
constructs are compiled into PHP.

5.2.1 Transformer Design

The transformer does its job by a simple recursive walk through the Ruby AST tree,
during which the resulting PHP AST tree is gradually built. The Ruby AST node classes
are extended by defining a transform method, which returns the PHP AST node for the
Ruby AST node it is called on. In many cases, the transform method recursively calls
itself on descendants of the given node.

For technical reasons, the transform method of some AST nodes does not return the
corresponding PHP nodes, but a structure with information used by the caller. This is
further described in Section 5.2.3.

The transform method requires some context information, which is passed in the context
parameter. For a detailed description of the context data, see the transformer source code
(compiler/lib/r2p/transformer.rb).

5.2.2 Statement-Expression Mismatch

As typical for languages with functional programming elements, every statement in Ruby
is an expression and has a value.4 This is not true in PHP, where many statements are
not expressions and it makes no sense to ask for their value.

For example, the value of Ruby if statement is the value of its taken branch, or nil if
no branch was taken (this can happen only when the condition is evaluated as false, but
there is no else-branch). The value of the branch is simply a value of the last contained
statement. However, the if statement or any other branching statement in PHP is not
an expression.5 How is the Ruby code in Listing 5.3 translated into PHP?

Listing 5.3: Ruby program printing the value of an if statement.

Prints "if-branch" or "else-branch" depending on the "condition"

variable value.

print(

if condition

Some statements may be here...

"if-branch"

else

Some statements may be here...

"else-branch"

end

)

4Actually, this is a simplification—there are several minor exceptions, but they are all handled by the
parser, which reports an error when a value is required from a statement that is not an expression.

5Except the ternary operator, which has a limited use.

43

To explain a general solution of the presented problem, it is first necessary to describe
two key concepts: the expression?6 method and saving of the node value.

5.2.2.1 The expression? Method

For every Ruby AST node it is important to know if the PHP AST node resulting from its
translation would be a PHP expression or not. All node classes provide this information
using the expression? method.

For some node classes, the expression? methods returns always the same value (e.g.
a Ruby class definition will never be transformed into a PHP expression). For other
node classes, the result is determined dynamically according to a node attributes or its
subnodes (e.g. a Ruby array literal will be transformed into a PHP expression if and
only if all its items will be themselves transformed into PHP expressions). The second
“dynamic” case is a reason why the expression? method is not implemented as a simple
class (static) attribute.

5.2.2.2 Saving of the Node Value

On many occasions, the value of a Ruby AST node needs to be saved into a variable in
PHP to be reused later. To do this, the transform method of that node needs to be
called with value needed parameter set to true. The emitted PHP AST will contain
a computation of the node value and its assignment into a PHP variable. The variable
name is based on the node ID, which is assigned to it during its creation.

The exact code generated depends on the node class. Generally, if the Ruby AST node
is transformed into a PHP expression, it is sufficient to wrap a node generated in the
value needed = false case into a node representing PHP assignment. In other cases,
the generated code is usually modified more.

5.2.2.3 Solving the Statement-Expression Mismatch

With understanding of the expression? method and saving of the node value, it is
possible to explain how the code in Listing 5.3 would be compiled. The node representing
the print method call (the “call node”) will call the expression? method on the node
representing its parameter (the “if node”). Its return value will be false (as Ruby if

statement is not transformed into a PHP expression), so the call node will know that
it needs to generate a node representing two statements: (a) the transformation of the
if node together with saving its value into a variable (this is accomplished by calling
transform(true, ...) on the if node) and (b) a print method call with a saved if node
value as a parameter.

Many situations similar to the presented example can be constructed and all of them can
be solved using the same technique as the one just described.

6The question mark at the end of the name is a Ruby convention to mark boolean methods.

44

5.2.3 Transformation of Ruby Constructs

This section describes the transformation of supported Ruby constructs into PHP. The
structure of the section is based on the listing of supported language elements in Ap-
pendix B. The description is more precise and complete than the description of runtime
representation of various Ruby constructs in PHP in Chapter 4. Still, many unimportant
details were left out—see the compiler/lib/r2p/transformer.rb file in the translator
source code for more information.

5.2.3.1 Literals

The integer literals in the Fixnum range are transformed into PHP integer literals.
Integer literals outside the Fixnum range are transformed into r2p bignum PHP runtime
call, which creates a reference to R2PBignum instance representing Ruby Bignum class in
PHP.

The float literals are transformed into r2p float PHP runtime call, which creates a ref-
erence to R2PFloat instance representing Ruby Float class in PHP.

The string literals are transformed into r2p string PHP runtime call, which creates
a reference to R2PString instance representing Ruby String class in PHP. If the trans-
lated string is interpolated, the interpolation is translated into printf-like string and ad-
ditional r2p interpolate call is generated to handle the substitution. For example,
Ruby string "#{1} and #{2}" is transformed into PHP code r2p string(r2p interpo-

late(’%s and %s’, 1, 2)).7

The symbol literals are translated in a similar way as strings but with r2p symbol PHP
runtime call used.

The array literals are transformed into r2p array or r2p array with splat PHP run-
time calls, which create a reference to R2PArray instance representing Ruby Array class
in PHP. Array items are passed as parameters to the call. The r2p array with splat

call is emitted when the splat operator is used and handles its applying (for a description
of the splat operator, see Section 4.5.5.5 in [33]).

The hash literals are transformed into r2p hash PHP runtime call, which creates a ref-
erence to R2PHash instance representing Ruby Hash class in PHP. Hash entries are passed
as parameters to the call, with each entry represented as a two-element PHP array.

The range literals are transformed into r2p range with initialize PHP runtime
call, which creates a reference to R2PRange instance representing Ruby Range class in
PHP. Range bounds and the exclusivity flag are passed as parameters to the call. The
with initialize suffix emphasizes that the initialize method (which performs some

checks on the range bounds) is called after creating the R2PRange instance.

5.2.3.2 Variables and Constants

At runtime, all global variables are stored in the $r2p global vars PHP global variable.
It contains an associative array mapping variable names to their values or a pair of

7The reader maybe expected %d format specifier instead of %s in the format string. The use of %s
format specifier is correct, because the interpolated values are converted into strings before interpolation
by the r2p interpolate function.

45

functions (getter and setter) in case of virtual variables.

Global variable reads are transformed into r2p global var get PHP runtime call, which
attempts to obtain the value of given variable from the $r2p global vars array. If the
variable exists, its value is returned, otherwise R2P NIL constant representing Ruby nil

is returned.

Global variable writes are transformed into templates for r2p global var set PHP run-
time call, which stores given variable value in the $r2p global vars array. The template
is filled-out with the set value and the calls are actually generated by the parent node in
the AST, which is always an assignment.

At runtime, all local variables are stored in a stack in the $r2p local vars PHP global
variable. Each item on the stack contains an associative array mapping variable names
from a particular scope to their values. When a new local variable scope is created,
an empty item is pushed on the stack; when a local variable scope is destroyed, the top
stack item is popped.

Local variable reads are transformed into r2p local var get PHP runtime call, which
attempts to retrieve the value of given variable from the top of the local variable stack.
If the variable exists, its value is returned, otherwise R2P NIL constant representing Ruby
nil is returned.

Local variable writes are transformed into templates for r2p local var set PHP runtime
call, which stores given variable value in the item on the top of the local variable stack.
The template is filled-out with the set value and the calls are actually generated by the
parent node in the AST, which is always an assignment.

At runtime, instance variables of any referenced object are stored in the object’s
$instance vars attribute. It contains an associative array mapping variable names to
their values. The instance variables of immediate values (which are represented as non-
objects in PHP) are stored in the $r2p value objects instance vars global variable.
It contains an associative array of associative arrays mapping object ID and a variable
name to its value.

Instance variable reads and writes are transformed into r2p instance var get in con-

text and r2p instance var set in context PHP runtime calls in a similar way as for
other variable types. Both functions automatically determine the object to operate on
from the current self value (thus the in context suffix).

At runtime, class variables of any class are stored in the class’s $class vars attribute.
It contains an associative array mapping variable names to their values.

Class variable reads and writes are transformed into r2p class var get in context and
r2p class var set in context PHP runtime calls in a similar way as for other variable
types. Both functions automatically determine the class to operate on from the current
self value and their position in the source code (thus the in context suffix).

At runtime, constants of any class are stored in the class’s $consts attribute. It contains
an associative array mapping constant names to their values.

Class variable reads and writes are transformed into r2p const get in context and
r2p const set in context PHP runtime calls in a similar way as for other variable
types. Both functions automatically determine the class to operate on from the current
self value and their position in the source code (thus the in context suffix).

46

5.2.3.3 Pseudo-variables

The self pseudo-variables are transformed into r2p self PHP runtime calls, which
retrieve the value of self from the self stack, placed in $r2p self stack global variable
at runtime.

The nil, true and false pseudo-variables are transformed into R2P NIL, R2P TRUE

and R2P FALSE constants, which contain PHP values null, true and false.

The FILE pseudo-variables are transformed as if they were a Ruby string literals
containing the current source file information. The string value is obtained from a node
attribute (all Ruby AST nodes contain source file and line information).

The LINE pseudo-variables are transformed in a similar way as FILE , but they
are integers.

5.2.3.4 Assignments

Assignments in Ruby can be classified as simple assignments or parallel assignments.
Simple assignments have only single item on either side of the assignment expression.
Parallel assignments have more than one item on left-hand-side (LHS), right-hand-side
(RHS), or both sides of the assignment expression. Precise semantics of the parallel
assignment is quite complicated and it is described in Section 4.5 in [33].

The simple assignments are transformed into a r2p global var set, r2p local var -

set, r2p instance var set in context, r2p class var set in context, r2p const -

set in context PHP runtime calls, or a PHP runtime call implementing a Ruby method
call, depending on the type of the assigned value. The template of the call is gener-
ated by the node containing the assignment LHS. If the RHS contains a splat operator,
the r2p pack assigned values PHP runtime function is called on it before assigning to
emulate applying of the operator.

The parallel assignments are transformed into a series of PHP statements and PHP
runtime calls, which build an array of assigned values and then assign its items into
the values on the LHS. The assignments of the values are implemented using the same
mechanism as in case of simple statements.

5.2.3.5 Block Expressions

The block expressions (begin/end) are transformed into a sequence of PHP statements
representing the transformed Ruby statements inside the code block.

If the block expression contains exception-handling statements (rescue and else), it is
transformed differently, though. For a description, see Section 5.2.3.14.

5.2.3.6 Conditional Statements

The Ruby if statements are transformed into PHP if statements. The conditions
are checked using the r2p true like PHP runtime function, which emulates the Ruby
behavior that nil and false are the only values considered as boolean false and all other
values are considered as boolean true.

47

The Ruby else clauses are transformed into PHP else clauses.

The Ruby elsif clauses are transformed into nested Ruby if statements by the parser
and then into nested PHP if statements by the transformer. Although it would be
possible to use PHP elseif statement as a translation of Ruby elsif, the transformation
into a nested if simplifies the Ruby AST.

The Ruby unless statements are transformed into Ruby if statements with a negative
condition by the parser and then into PHP if statements by the transformer.

Tail forms of the if and unless statements are represented in the same way as their
normal forms in the Ruby AST and they are transformed as such.

5.2.3.7 Looping Statements

The Ruby while statements are transformed into PHP while statements in normal cases
and into PHP do. . . while statements in case of tail form with begin/end code block as
a body. The conditions are checked using the r2p true like PHP runtime function.

If the condition is an expression, it is checked directly in the condition of the PHP
while (or do. . . while) statement. Otherwise, a while(true) {...} (or do {...} while

(true)) cycle is generated, the condition is evaluated and checked in the beginning of the
cycle body and the break statement is used to terminate the cycle if the condition is not
satisfied.

The Ruby until statements are transformed into Ruby while statements with a nega-
tive condition by the parser and then into PHP while statements by the transformer.

Tail forms of the while and until statements are represented in the same way as their
normal forms in the Ruby AST and they are transformed as such.

5.2.3.8 break and next Statements

Inside a cycle, the Ruby break statements are transformed into PHP break statements.
Because there may be dummy cycles generated inside the PHP cycle representing a Ruby
cycle (see Section 5.2.3.14), break n form may be generated to break to the correct level.

Outside a cycle, the Ruby break statements are transformed into r2p raise PHP runtime
calls that raise LocalJumpError Ruby exception.

The information about the statement placement and the dummy cycles is obtained from
the context object passed to the transform method.

The Ruby next statements are transformed in a similar way to Ruby break statements,
but the PHP continue statements are generated instead of PHP break statements.

5.2.3.9 Method Definitions, Redefinitions and Undefinitions

The instance method definitions are transformed into a PHP function definitions
followed by r2p define instance method PHP runtime calls.

The transformed PHP function contains transformed statements of the Ruby method,
wrapped between the r2p method enter and r2p method leave PHP runtime calls. It

48

is not declared with any formal parameters. The function name is created to be unique
(it uses the ID of the Ruby AST node containing the method definition) and has no
resemblance to the original method name.

The r2p method enter function accepts method parameter description and actual pa-
rameters passed to the PHP function (obtained using func get args PHP function). It
uses the description to assign passed parameters into local variables visible throughout
the function. It also creates a new local variable scope and sets the correct value of self.

The r2p method leave function restores previous local variable scope and a value of self.

The r2p define instance method function performs certain checks and then registers
the generated PHP function as an implementation of given method at the active class.

The singleton method definitions are transformed in the same way as instance method
definitions except one difference: r2p define singleton method PHP runtime calls are
used instead of r2p define instance method.

The method undefinitions are transformed into r2p undefine methods PHP runtime
calls.

5.2.3.10 Method Invocations

Method invocations in Ruby can be classified as right-hand side (RHS) or left-hand side
(LHS). RHS method calls are on the right-hand side of the assignment expression or not
inside an assignment expression at all. LHS method calls are on the left-hand side of the
assignment expression. Both kinds of invocations are translated differently.

Note that some Ruby constructs are in fact masked method calls. Listing 5.4 illustrates
some of them together with the RHS/LHS distinction. For more information, see Sec-
tion 4.5.3 in [33].

Listing 5.4: Ruby program containing various statements that are in fact method calls.

girl.name = "marci".capitalize # RHS call of the "capitalize" method

on a string with no parameters;

LHS call of the "name=" method on the

"girl" variable with one parameter

(the capitalized string).

matrix[1,2] = 5 # LHS call of the "[]" method on the

"matrix" variable with three

parameters(1, 2 and 5).

puts list[index] # RHS call of the "[]" method on the

"list" variable with one parameter

("index" variable) and RHS call of the

"puts" method on the top level object

with one parameter (the list item).

The RHS method invocations with an explicit receiver, no associated block and no
splat operator are transformed into r2p call PHP runtime calls. Parameters of these
calls are the method call receiver, the method name and parameters of the method call

49

(the r2p call function has a variable parameter count to accommodate parameters of any
Ruby method call). The r2p call function calls other PHP runtime functions internally,
which ensure that the PHP function implementing the method will be called, if the receiver
handles the method. The behavior exactly matches Ruby method dispatch semantics.

If the invocation contains a splat operator, the last parameter is passed to the r2p ex-

pand splat function that emulates Ruby splat expansion. Resulting object (a PHP array)
is merged with the positional parameters using array merge PHP function, producing
another PHP array. The r2p call function is then called using call user func array

PHP function, which allows the PHP runtime to pass it the parameters using that array.

If the invocation does not contain an explicit receiver, the method calls are transformed
into r2p call without receiver or r2p call maybe local var calls. The second func-
tion is used when there is a possibility that the method call may be in fact a local
variable (see Section 4.4 in [33] for description of this ambiguity). Both functions cause
the PHP runtime to behave a bit differently when the receiver cannot handle the called
method (for details, see the implementation of the Kernel#method missing method in
the /runtime/lib/modules/kernel.php file in the PHP runtime source code). In the
generated code, nothing changes from the explicit receiver case except the function name.

If the invocation contains an associated block, the with block suffix is appended to
the name of the PHP runtime function handling the invocation and the block variable is
passed as its third parameter (after the method name). The with block version of the
runtime functions ensure that the block is placed on the PHP runtime stack emulating
Ruby call stack. For description of block variables, see Section 5.2.3.12.

The LHS method invocations are transformed in a similar way as variable writes—the
transform method creates a template of the PHP runtime function call (the function
name and parameters are determined in the same way as in RHS method invocations).
This template is filled-out with the value set and the call is actually generated by the
parent node in the AST, which is always an assignment.

5.2.3.11 return and super Statements

Inside a method, the Ruby return statements are transformed into PHP return state-
ments, preceded with r2p method leave PHP runtime call. The call is needed to pop
the current local variable scope and restore the previous value of self before exiting the
function.

Outside a method, the Ruby return statements are transformed into r2p raise PHP
runtime calls that raise LocalJumpError Ruby exception.

The information about the statement placement is obtained from the context object passed
to the transform method.

The super statement invocations with no associated block and no splat operator
are transformed into r2p super PHP runtime call. Parameters of these calls are the
parameters of the super statement (the r2p super function has a variable parameter
count to accommodate parameters of any super statement). The r2p super function
calls other runtime functions internally that emulate Ruby super statement behavior.

The situation when the super statement contains a splat operator or has an associated
block are resolved in the same way as in method invocations (see Section 5.2.3.10).

50

5.2.3.12 Blocks and the yield Statement

The blocks associated with method calls are transformed into block variable definitions
followed by definitions of PHP functions representing the blocks.

The block variable definition is an assignment which defines a block variable. This variable
contains information about the block—in the current implementation only a name of
the PHP function representing the block. This variable is placed to the PHP runtime
stack emulating Ruby call stack by a PHP runtime function handling a method call with
an associated block. The variable name is created to be unique (it uses the ID of the
Ruby AST node containing the block).

The PHP function contains transformed statements of the block wrapped between r2p -

block enter and r2p block leave PHP runtime calls. It is not declared with any formal
parameters. The function name is created to be unique (it uses the ID of the Ruby AST
node containing the block). Assignment to the block parameters are emitted after the
r2p block enter call.

The r2p block enter function creates a new local variable scope and sets the correct
value of self.

The r2p block leave function restores previous local variable scope and a value of self.

The yield statements with no splat operator are transformed into r2p yield PHP
runtime calls. Parameters of these calls are the parameters of the block invocation (the
r2p yield function has a variable parameter count to accommodate parameters of any
block invocation). The r2p yield function calls other PHP runtime functions internally,
which ensure that the PHP function implementing current block will be called. The
behavior exactly matches Ruby yielding semantics.

The situation when the yield statement contains a splat operator is resolved in the same
way as in method invocations (see Section 5.2.3.10).

5.2.3.13 Class and Module Definitions and Redefinitions

The class definitions are transformed into r2p begin class definition and r2p -

end class or module definition PHP runtime calls, which wrap the transformed state-
ments inside the class definition.

The r2p begin class definition function makes some checks first. If they do not catch
any problems, the behavior of the function depends on the situation:

• If the class is defined (i.e. opened for the first time), the function creates a new
R2PClass instance for the defined class, it creates a constant for it (with a name
equal to the class name) and sets it as the current class.

• If the class is reopened (i.e. it was defined already), the function finds the corre-
sponding R2PClass instance and sets it as the current class.

In both cases, the function creates a new local variable scope and sets a value of self to
the defined class.

51

The setting of self and current class ensures that methods defined inside the class defi-
nition will be added to the defined class and that constant and class variable lookup will
work correctly.

The r2p end class or module function restores previous local variable scope, current
class and the value of self.

The metaclass definitions and module definitions are transformed in the same way as
casual classes. The only significant difference is that r2p begin metaclass definition

and r2p begin module definition PHP runtime calls are used instead of r2p begin -

class definition.

5.2.3.14 Exception Raising and Handling

The raise statement is in fact a method defined in the Kernel module. It is imple-
mented in the PHP runtime and the transformer treats its invocation as any other method
call. When invoked, the method sets the exception flag and saves the raised exception
into a global variable.

The compiler generates exception checks after each construction that might raise an ex-
ception (e.g. method calls, local variable reads, etc.). It is a simple if statement that
checks the exception flag and interrupts the statement sequence—using a break statement
inside a rescued statements (see below) or a return statement everywhere else. The chain
of exception checks placed after method calls causes stack unrolling as if real exceptions
were used.

The information about the exception check placement is obtained from the context object
passed to the transform method.

The rescue clauses are transformed into wrappers around rescued statements and series
of tests that match the rescue clauses and check if any exception should be caught by
the handler.

The rescued statements are wrapped inside a do {...} while(false) cycle. If no ex-
ception is raised in the rescued statements, the cycle will not play any role in the program
execution. If any exception is raised, it will be detected by the nearest exception check
and a break statement will be issued, skipping all remaining statements in the cycle and
transferring control to the following exception handler (the transformed rescue clauses).

If a rescue clause does not contain an exception class, it catches exceptions of the Stan-

dardError class and its subclasses. The raised exception is tested using r2p raised ex-

ception is standard error PHP runtime call in this case.

If a rescue clause contains one or more exception classes, it catches exception of these
classes or their subclasses. The raised exception is tested using r2p raised exception -

is a or r2p raised exception is one of PHP runtime calls in this case.

If a rescue clause contains a variable, an assignment is generated after the exception class
check, which assigns the raised exception into that variable.

Tail form of the rescue clause is represented in the same way as its normal form in the
Ruby AST and it is transformed as such.

The else clauses are transformed by the parser already. Their statements are simply
appended to the rescued statements.

52

5.3 Serializer

The serializer is the final step in the compilation chain. It serializes the PHP AST into
a PHP source code. It does this job by a simple recursive walk through the tree, during
which it emits appropriate PHP statements for the nodes. To aid debugging, the generated
code is properly indented and whitespace is used quite liberally.

Technically, the serializer is implemented in a very similar way to the transformer. It
extends the AST node classes by defining an emit method, which emits the PHP code
for given node and recursively calls itself on its descendants as needed.

53

Chapter 6

Related Work

While many translators between static languages exist, translators between dynamic lan-
guages are far less common. The main reason is probably that the dynamic languages are
not used as widely as static languages and also that writing a dynamic language translator
is more difficult due to the nature of the dynamic languages.

This chapter describes several projects which are similar to the Ruby to PHP translator
in some way—they either compile a dynamic language into another language or use PHP
as the target language of the translation.

6.1 HotRuby

The most closely related project is HotRuby [26], which is a Ruby virtual machine written
in JavaScript, in effect serving as a compiler of Ruby into JavaScript. The approach used
is very different from the translator’s strategy—HotRuby uses a parser and bytecode com-
piler contained in Ruby 1.9 and only implements the bytecode interpreter and supporting
runtime code on the JavaScript side. This decision allowed its author to avoid reimple-
menting the Ruby parser. For details about the HotRuby project, see Section 2.5.5.6.

Other Ruby implementations than HotRuby are either interpreters or compilers and they
do not translate Ruby into other language.

6.2 Python to OCaml Compiler

An interesting project is the Python to OCaml compiler developed by Raj Bandyopad-
hyay (together with Walid Taha and Ken Kennedy) as a part of a research at the Rice
University. The idea is to write an efficient compiler for Python without the need to
write its backend. The resulting implementation uses OCaml as an intermediate lan-
guage and reuses its compiler for compilation into the native code. OCaml was chosen
mainly because of its good memory management runtime, highly expressive type system,
ease of translation and the foreign function interface, which allows it to integrate well
with external libraries. [34]

54

The compiler itself is written in OCaml and has a very similar structure to the Ruby to
PHP translator: the Python source code is parsed into an AST, this AST is transformed
into OCaml AST, and finally the OCaml code is emitted, which can be compiled by the
OCaml compiler into the native code.

At runtime, a Python runtime environment written in OCaml is used. It is modeled after
the original Python implementation and it uses several native OCaml classes to implement
Python built-in classes (such as dictionaries or arrays). It is functionally similar to the
PHP runtime in the Ruby to PHP translator.

According to the author, the challenges of the project were mainly the Python language
dynamism, rich function call protocol and exception handling (which requires the stack
traces). [34] These challenges are similar to the challenges met when developing the Ruby
to PHP translator.

6.3 haXe

haXe [35] is an attempt to design an open source language similar to Java or C#, but
with some modern features such as closures or type inference. The haXe language has
an unique approach to the compilation—the source code can be translated into JavaScript,
ActionScript 3, Flash (.swf file), PHP or a bytecode for the Neko virtual machine [36].
This allows to use haXe in many different contexts (client-side browser programming,
server-side web applications, etc.) while avoiding binding to any specific platform.

The haXe language is strongly and statically typed, but allows for certain dynamic con-
structs and reflection. In most aspects (including syntax), it is similar to Java or C#, but
it contains many “modern” features usually present in dynamic languages, such as first-
class functions, closures or regular expression literals. It offers an advanced type system
supporting generics, type inference, structural subtyping, anonymous types, polymorphic
methods and other features.

6.3.1 PHP Backend

The generated PHP code supports all the haXe language and requires at least PHP 5.1.3
for running. It is quite similar to the original haXe code (e.g. haXe statements are
mapped to equivalent PHP statements, haXe classes and methods are mapped to PHP
classes an methods). This is a direct consequence of the haXe’s nature (which is not
nearly as flexible as Ruby) and it is very different from the Ruby to PHP translator,
where many Ruby constructs must be emulated indirectly in PHP.

The haXe compiler uses a runtime environment similar to the PHP runtime to provide
libraries and other necessary support code to the translated program. This environment
is much more object-oriented than the PHP runtime, which is partially caused by the
design of the haXe language and also by the chosen minimal supported PHP version. In
the Ruby to PHP translator implementation, several design decisions that precluded full
object orientation of the PHP runtime were made and the original Ruby implementation,
which is not written in object-oriented fashion, was partially followed (see Section 4.1.2
for details).

55

6.4 Summary

From the presented projects, it is clearly visible that writing a translator of a dynamic
language and a static language are very different tasks. The author of the Python to
OCaml compiler had to overcome similar difficulties as the thesis author and his approach
to the task was similar. On the other hand, the translation of the static haXe language
into PHP seems to be a relatively simple task and the language constructs are mapped
quite directly into PHP. In all cases, a supporting runtime environment written in the
target language was needed.

56

Chapter 7

Conclusion

The primary objective of this work was to design and implement a compiler translating
a significant subset of the Ruby language into PHP, with emphasis on the correct trans-
lation of dynamic and functional language elements and compatibility with the original
Ruby language implementation.

This goal was successfully reached. A practically usable compiler was created demon-
strating that a very high-level and dynamic language such as Ruby can be successfully
implemented using another dynamic language. Part of the original motivating idea—
running Ruby applications on a web server—also materialized: the implementation allows
to translate simple Ruby programs into PHP, upload them on a web server and run in
that environment like any other PHP code.

The generated PHP code is very different from the original Ruby code and requires a pres-
ence of the PHP runtime with supporting functionality. Both traits are a direct result
of the Ruby language dynamism and its reliance on the core class library for many basic
tasks.

During the implementation, most of the time was spent on studying source code of other
Ruby implementations (mainly the original one) in order to understand details of the
interpreter behavior, which are not documented anywhere. Unexpected number of in-
consistencies, strange edge-cases and other “surprises” was found when examining the
internals. Most of this behavior was closely replicated in the translator. The result of
this painstaking work is that the translator is closely compatible with the original imple-
mentation and it supports its many features.

The only thing to regret is that the officially-blessed book containing a thorough language
description, The Ruby Programming Language [33], was published in January 2008 and
author obtained it several months later, when the implementation was almost finished.
Many hours of work could be saved had it been available earlier.

7.1 Inherent Limitations

Although it is possible for the compiler and PHP runtime to implement almost all Ruby
language in a way compatible with the original Ruby implementation, there are certain
inherent limitations which preclude full implementation of some features.

57

The most important limitation is absence of threads in PHP. They are not supported by
the language and as far as the author knows, their support cannot be added by any library
or extension. This means that the Thread and ThreadGroup core library classes, which
encapsulate threading in Ruby, must remain unimplemented and correct translation of
multithreaded programs is currently not possible.

Another limitation is PHP’s inability to support continuations. Continuations require
explicit call stack manipulation—a feature PHP does not offer (in PHP, the call stack can
be manipulated only implicitly by calling functions or methods, returning from them and
by throwing exceptions). This means that the Continuation core library class and the
Kernel#callcc method, which encapsulate continuations, must remain unimplemented
and correct translation of programs using continuations will not ever be possible.1

The core library classes IO and File provide some methods that do not have their coun-
terparts in PHP. These are mainly low level methods such as IO#ioctl. Implementation
of these methods is simply impossible in unmodified PHP. The only solution would be to
write a PHP extension which would implement counterparts to these methods using the
C standard library and make them visible in PHP. This solution is far from ideal.

7.2 Future Work

Although the translator in its current state compiles most of the Ruby language, there
is a room for improvement and future work. The author’s intention is to continue to
improve the translator after the thesis finalization, to open the source code and possibly
accept contributions from others.

7.2.1 Increasing Ruby Language Coverage

One direction in which the translator can be improved is adding support for unimple-
mented constructs of the Ruby language. Current version does not support some con-
structs at all (e.g. for and case statements2) and it supports some constructs only par-
tially (e.g. the return statement presently cannot take multiple parameters, break/next
statements cannot take parameters at all).

Another obvious area for future improvement is the Ruby core class library. Although
current translator version already supports more than one third of methods in the library
classes, the rest remains to be implemented.

7.2.2 Optimization

At the beginning of the thesis, an example of a Ruby code which is hard to optimize (List-
ing 3.1) was presented together with an explanation, why it was chosen not to optimize

1Ruby implementations implemented on the top of the Java and .NET virtual machines do not support
continuations either, for the same reasons as the translator. The continuation support must be hard-wired
into the underlying virtual machine.

2Lack of support of seemingly essential statements like for and case may seem surprising. However
in real Ruby applications, the for statement is almost never used (it is usually replaced by the functional
constructs) and the case statement can be easily replaced by a series of if statements.

58

the generated code significantly in this work. But this does not mean that the generated
code it is not worth optimizing at all.

There are two levels of possible optimization: algorithmic and implementation.

On the algorithmic level, there are several possibilities to optimize the generated code with
well-known optimization techniques (such as method caching, which is often employed in
dynamic language implementations to speed up the method dispatch mechanism), along
with simple streamlining of specific code sequences (for example, in certain situations
lots of unnecessary temporary variables are created in the complier-generated PHP code,
which could be eliminated with some additional work).

Optimization on the implementation level would require using some PHP profiler tool to
find performance bottlenecks in typical translated programs and devising optimization
techniques to remove them.

7.2.3 Ruby and PHP Integration

Integration of the generated code with PHP is not perfect at this point. It simply was
not the main goal of the thesis (see Chapter 1). Despite this, it is possible to easily
embed translated Ruby programs into larger PHP applications and use their features.
The opposite—use of PHP code from the translated Ruby program—requires wrapping
the PHP code into objects and classes compatible with the translator’s PHP runtime.
This could be remedied in the future by extending the PHP runtime to handle normal
PHP objects.

7.2.4 Multiple Platform Support

The translator is currently only supported on the Linux operating system. During the
development, it was also tested on Windows and Mac OS X platforms, but compatibility
issues appeared on both platforms.

On Windows, the translator itself appears to work, but the regression testing framework
used in the implementation could not be made to run because of bugs in the Ruby libraries
emulating common Unix system calls. As a result, the translator correctness cannot be
guaranteed. The solution would be to redesign and rewrite the testing framework.

On Mac OS X, the installed PHP version does not contain the bcmath built-in library for
handling arbitrarily big numbers, which is used in the implementation of the Bignum Ruby
class. The workaround would be to rewrite the implementation to make it independent
on this library. Other than that, the translator appears to work correctly.

Problems encountered on the Windows and Mac OS X platforms could not be resolved in
a timely manner and required declaring other platforms than Linux unsupported. However
the issues found are not insolvable and generally require only certain amount of time.
Theoretically, the translator should be able to run on any platform supporting both Ruby
and PHP.

59

7.2.5 Other Possible Improvements

Some parts of the translator code (mainly the lexer and parser) are based on the origi-
nal Ruby implementation. The code structure of these parts is not ideal (it copies bad
structure of the original implementation) and could be improved.

During the translator development, the implementation was sometimes hindered by main-
taining PHP 4 compatibility. In the future, dropping PHP 4 support could be considered.
This would open up the possibility of mapping Ruby exceptions into PHP exceptions
directly, the R2PRef “hack” (see Section 4.1.2.1) would become unnecessary and various
other improvements to the PHP runtime code would be possible.

60

References

[1] Ruby Visual Identity Team: Ruby Programming Language.
http://ruby-lang.org/, retrieved on 2008-07-15.

[2] The PHP Group: PHP: Hypertext Preprocessor.
http://www.php.net/, retrieved on 2008-07-15.

[3] 37signals, Inc.: Ruby on Rails.
http://www.rubyonrails.com/, retrieved on 2008-07-15.

[4] Reenskaug T. (1979): Thing-Model-View-Editor.
http://heim.ifi.uio.no/~trygver/1979/mvc-1/1979-05-MVC.pdf, retrieved on
2008-07-15.

[5] Reenskaug T. (1979): Models-Views-Controllers.
http://heim.ifi.uio.no/~trygver/1979/mvc-2/1979-12-MVC.pdf, retrieved on
2008-07-15.

[6] Fowler, M. (2003): Patterns of Enterprise Application Architecture. Addison-Wesley,
Boston.

[7] Phusion: Phusion Passenger.
http://www.phusion.nl/, retrieved on 2008-07-15.

[8] Ford B. et al.: RubySpec.
http://www.rubyspec.org/, retrieved on 2008-07-15.

[9] Cake Development Corporation, Inc.: CakePHP.
http://www.cakephp.org/, retrieved on 2008-07-15.

[10] Matsumoto, Y. (2008): EURUKO 2008 Keynote.
http://www.euruko2008.org/system/assets/documents/0000/0010/

matsumoto-ruby-past-future-and-present-euruko08.pdf, retrieved on
2008-07-21.

[11] Kalnbach, K. (2008): Ruby 1.8 vs. 1.9 Benchmarks.
http://www.rubychan.de/share/yarv_speedups.html, retrieved on 2008-07-15.

[12] JRuby team: JRuby.
http://jruby.codehaus.org/, retrieved on 2008-07-15.

61

http://ruby-lang.org/
http://www.php.net/
http://www.rubyonrails.com/
http://heim.ifi.uio.no/~trygver/1979/mvc-1/1979-05-MVC.pdf
http://heim.ifi.uio.no/~trygver/1979/mvc-2/1979-12-MVC.pdf
http://www.phusion.nl/
http://www.rubyspec.org/
http://www.cakephp.org/
http://www.euruko2008.org/system/assets/documents/0000/0010/matsumoto-ruby-past-future-and-present-euruko08.pdf
http://www.euruko2008.org/system/assets/documents/0000/0010/matsumoto-ruby-past-future-and-present-euruko08.pdf
http://www.rubychan.de/share/yarv_speedups.html
http://jruby.codehaus.org/

[13] Nutter, Ch. (2007): Paving the Road to JRuby 1.0: Performance.
http://headius.blogspot.com/2007/04/paving-road-to-jruby-10-performance.

html, retrieved on 2008-07-15.

[14] Microsoft, Inc.: IronRuby.
http://www.ironruby.com/, retrieved on 2008-07-15.

[15] Phoenix, E. et al.: Rubinius: The Ruby Virtual Machine.
http://rubini.us/, retrieved on 2008-07-15.

[16] GemStone Systems, Inc.: MagLev – Ruby that scales.
http://ruby.gemstone.com/, retrieved on 2008-07-15.

[17] Apple, Inc.: MacRuby.
http://www.macruby.org/, retrieved on 2008-07-15.

[18] The RubyCocoa Project: RubyCocoa.
http://rubycocoa.sourceforge.net/, retrieved on 2008-07-15.

[19] Zhi, X. Y. et al.: XRuby.
http://xruby.com/, retrieved on 2008-07-15.

[20] Zhi, X. Y. (2008): Re: Questions about XRuby. Thesis author’s correspondence with
Zhi, X. Y.

[21] Zhi, X. Y. (2007): XRuby is faster than Ruby 1.8.5 in most benchmarks.
http://xruby.blogspot.com/2007/03/xruby-runs-most-benchmark-faster-than.

html, retrieved on 2008-07-15.

[22] Kelly, W. et al.: Ruby.NET.
http://rubydotnet.googlegroups.com/web/Home.htm, retrieved on 2008-07-15.

[23] Kelly, W. (2008): The future of Ruby.NET.
http://groups.google.com/group/RubyDOTNET/browse_thread/thread/

1752830c857620b0, retrieved on 2008-07-15.

[24] Tew, K.: Cardinal: Ruby Interpreter for Parrot.
http://cardinal2.rubyforge.org/, retrieved on 2008-07-15.

[25] Nilsson, N. (2007): Is it too late for Parrot VM?
http://www.infoq.com/news/2007/09/is-it-too-late-for-parrot, retrieved
on 2008-07-15.

[26] Kobayashi, Y.: HotRuby – Ruby on JavaScript & Flash.
http://hotruby.accelart.jp/, retrieved on 2008-07-15.

[27] Mozilla Foundation: IronMonkey.
http://wiki.mozilla.org/index.php?title=Tamarin:IronMonkey&oldid=

65786, retrieved on 2008-07-15.

[28] Aoki, M.: Racc.
http://i.loveruby.net/en/projects/racc/, retrieved on 2008-07-15.

62

http://headius.blogspot.com/2007/04/paving-road-to-jruby-10-performance.html
http://headius.blogspot.com/2007/04/paving-road-to-jruby-10-performance.html
http://www.ironruby.com/
http://rubini.us/
http://ruby.gemstone.com/
http://www.macruby.org/
http://rubycocoa.sourceforge.net/
http://xruby.com/
http://xruby.blogspot.com/2007/03/xruby-runs-most-benchmark-faster-than.html
http://xruby.blogspot.com/2007/03/xruby-runs-most-benchmark-faster-than.html
http://rubydotnet.googlegroups.com/web/Home.htm
http://groups.google.com/group/RubyDOTNET/browse_thread/thread/1752830c857620b0
http://groups.google.com/group/RubyDOTNET/browse_thread/thread/1752830c857620b0
http://cardinal2.rubyforge.org/
http://www.infoq.com/news/2007/09/is-it-too-late-for-parrot
http://hotruby.accelart.jp/
http://wiki.mozilla.org/index.php?title=Tamarin:IronMonkey&oldid=65786
http://wiki.mozilla.org/index.php?title=Tamarin:IronMonkey&oldid=65786
http://i.loveruby.net/en/projects/racc/

[29] Feldt, R.: rockit.
http://rockit.sourceforge.net/, retrieved on 2008-07-15.

[30] Mössenböck, H., Löberbauer, M., Wöß, A.: The Compiler Generator Coco/R.
http://www.ssw.uni-linz.ac.at/coco/, retrieved on 2008-07-15.

[31] Grosse, H.: ruby-yacc.
http://raa.ruby-lang.org/project/ruby-yacc/, retrieved on 2008-07-15.

[32] Gamma, E. et al., (1995): Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, Boston.

[33] Flanagan, D., Matsumoto, Y: (2008). The Ruby programming language. O’Reilly,
Beijing.

[34] Bandyopadhyay, R. (2007): Compiling Dynamic Languages.
http://video.google.com/videoplay?docid=-2077755378178864152, retrieved
on 2008-08-02.

[35] Motion-Twin: haXe.
http://www.haxe.org/, retrieved on 2008-08-02.

[36] Motion-Twin: NwkoVM.
http://www.nekovm.org/, retrieved on 2008-08-02.

63

http://rockit.sourceforge.net/
http://www.ssw.uni-linz.ac.at/coco/
http://raa.ruby-lang.org/project/ruby-yacc/
http://video.google.com/videoplay?docid=-2077755378178864152
http://www.haxe.org/
http://www.nekovm.org/

Appendix A

Installation and Usage

This appendix describes requirements, installation and basic usage of the translator.

A.1 Requirements

A.1.1 Operating System

The translator is currently only supported on the Linux operating system. It was suc-
cessfully tested with Ubuntu 8.04.1 on the IA-32 architecture.

During the development, the translator was also tested on Windows and Mac OS X
platforms, but compatibility issues appeared on both. As a result, the translator is able
to run on Windows on Mac OS X with some limitations, but it is not supported officially
(see Section 7.2.4 for details).

A.1.2 Ruby

The translator requires Ruby 1.8.6 installed together with rake, activesupport and diff-lcs
gems.1 It was successfully tested with Ruby 1.8.6-p111, rake 0.8.1, activesupport 2.1.0
and diff-lcs 1.1.2.

To install Ruby, visit http://www.ruby-lang.org/ and follow the installation instruc-
tions for your platform. You can also use the package manager of your operating system.
Make sure that you install the latest 1.8 version, not the 1.9 development branch (you
can always check the installed Ruby version using the ruby -v command).

To install the RubyGems tool (needed to install the required gems), visit http://www.

rubygems.org/ and follow the installation instructions in the user guide. Note that if
you install Ruby using the one-click installer for Windows, RubyGems tool is preinstalled
already.

1The diff-lcs gem is not needed for normal usage, only for running the translator tests.

64

http://www.ruby-lang.org/
http://www.rubygems.org/
http://www.rubygems.org/

To install the required gems, use following commands:

gem install -y rake

gem install -y activesupport

gem install -y diff-lcs

A.1.3 PHP

The generated PHP programs require PHP 4.4.x or 5.2.x. The translator was successfully
tested with PHP 4.4.8 and PHP 5.2.6. Older or newer versions of PHP than specified
may work too.

The generated PHP programs are able to run both in PHP executed from the command-
line or running on the web server. PHP must be configured to allow call-time pass-by-
reference specification (this can be enabled in php.ini by setting the allow call time -

pass reference configuration option to On).

To install PHP, visit http://www.php.net/ and follow the installation instructions for
your platform in the documentation. You can also use the package manager of your
operating system.

A.2 Installation

To install the translator, just copy contents of the Implementation directory on the CD
to any directory.

A.3 Usage

The translator can be invoked via the compiler/bin/r2p script.2

The translator accepts the Ruby source code to translate on the standard input and
outputs the generated PHP code on the standard output. Alternatively, you can specify
a file with the Ruby source code on the command line, in which case the output will be
written into a file with the same name but the extension changed to .php. Several files
with sample programs to translate can be found in the examples directory.

For example, to translate the examples/hello world.rb sample program, execute fol-
lowing command:

ruby compiler/bin/r2p examples/hello_world.rb

The hello world.php file will be created, which can be executed by PHP:

php examples/hello_world.php

2To execute the script in Unix environment, just type its name in the shell. On Windows, you have
to execute it using the ruby command (e.g. ruby compiler/bin/r2p).

65

http://www.php.net/

The translator accepts several command-line options. For a full list, see the translator
help, which can by displayed using the --help command-line option.

Note that the generated PHP programs require the PHP runtime, whose PHP source code
can be found in the runtime/lib directory. The translator embeds correct relative path
to the PHP runtime into the generated PHP files.3 When copying the generated PHP
files into different location, either copy the PHP runtime too or edit the path to the PHP
runtime inside the generated PHP files.

3This can be overridden using the --runtime-path command-line option.

66

Appendix B

Supported Features

This appendix lists Ruby features supported by the compiler and the PHP runtime.
Because Ruby depends heavily on its core class library, the appendix also includes a listing
of implemented classes and modules from this library, along with a list of supported
predefined global constants1 (Table B.1) and variables (Table B.2).

In general, the translator is compatible with Ruby 1.8.6-p114.

B.1 General Limitations

For simplicity, the compiler and the PHP runtime assume 32-bit little-endian architecture
(such as IA-32). Adding support for other architectures should not be hard, as there are
only few architecture-dependent places in the code and they are all clearly marked.

Generally, Ruby programs can be written in 7-bit ASCII, Kanji (using EUC or SJIS),
or UTF-8. To simplify the implementation, the translator officially supports only 7-bit
ASCII. However non-ASCII characters are preserved in the string literals and ignored in
the comments, so in fact, most reasonable encodings (such as Windows 1250, ISO-8859-2
or UTF-8) can be used.

Many limitations specific to certain language constructs or methods in the core library
are described in the footnotes.

B.2 Language Elements

The compiler supports following Ruby language elements.

• Literals for classes Fixnum, Bignum, Float, Symbol, String, Array, Hash and
Range2, including all alternate syntaxes

1Strictly speaking, there are no global constants in Ruby, as all constants are defined in some class.
We define global constants as constants defined in the Object class without constants representing Ruby
modules and classes.

2So called “flip-flops” are not supported.

67

• Operators (both built-in and method-based)

• Local, global, instance and class variables

• Constants

• Pseudo-variables self, nil, true, false, FILE and LINE

• Assignments, including parallel assignments and splat operator3

• Block expressions (begin/end)

• Conditional statements (if/elsif/else and unless/else, including their tail forms)

• Looping statements (while and until, including their tail forms)

• break and next statements4

• Method definitions (def), redefnitions and undefinitions (undef) with positional
and rest parameter specification5

• Method visibility setting and enforcing

• Singleton methods

• Method invocations with positional and rest parameter passing

• return6 and super7 statements

• Blocks and the yield statement

• Class and module definitions and redefinitions (class, module)

• Singleton classes

• Exception raising (raise) and handling (rescue/else, including rescue tail form)

• BEGIN and END blocks

• End of the source code directive (END)8

• Comments

When the parser encounters an unsupported elements, it reports an error with appropriate
message for the user and the compilation is halted.

3Qualified constant assignments and assignments using &&= and ||= operators are not supported.
4The break and next statements can be used only in cycles and without any parameters. In Ruby,

both statements can be used in blocks too and they accept parameters.
5Nested method definitions are not supported.
6The return statement can return only one value and it is allowed only in methods. In Ruby, multiple

values can be returned, the splat operator can be used and the return statement can be used in blocks
too.

7The super statement cannot be invoked from blocks. There is no such limitation in Ruby.
8Lines after the END directive are not available to the script. In Ruby, they can be read using the

global IO object DATA.

68

B.3 Core Classes

B.3.1 ArgumentError

Does not define any constants nor methods.

B.3.2 Array

Public methods: &, *, +, -, <<, <=>, ==, []9, []=10, assoc, at, clear, collect,
collect!, compact, compact!, concat, delete at, each, each index, empty?, first,
hash, include?, index, insert, inspect, join, last, length, map, map!, nitems, pop,
push, rassoc, replace, reverse, reverse!, rindex, shift, size, sort11, sort!12, to a,
to ary, to s, transpose, uniq, uniq!, unshift, |

Private methods: initialize13

B.3.3 Bignum

Public methods: %, &, *, +, -, -@, /, <=>, ==, ^, abs, coerce, div, eql?, hash, modulo,
size, to f, to s, |, ~

B.3.4 Class

Public methods: allocate, new, superclass

Private methods: initialize14

B.3.5 EOFError

Does not define any constants nor methods.

B.3.6 Exception

Class methods: exception

Public methods: backtrace, exception, inspect, message, set backtrace, to s,
to str

Private methods: initialize

9The [] method accepts only one numerical index.
10The []= method accepts only one numerical index.
11The sort method does not protect against array modification during the call.
12The sort! method does not protect against array modification during the call.
13The initialize method always initializes an empty array.
14The initialize method does not protect against reinitialization for architectural reasons.

69

B.3.7 FalseClass

Public methods: &, ^, to s, |

B.3.8 fatal

Does not define any constants nor methods.

B.3.9 File

Constants: PATH SEPARATOR, SEPARATOR, Separator

B.3.10 Fixnum

Public methods: %, &, *, +, -, -@, /, <, <=, <=>, ==, >, >=, ^, abs, div, divmod, id2name,
modulo, quo, size, to f, to s, to sym, zero?, |, ~

B.3.11 Float

Public methods: %, *, +, -, -@, /, <, <=, <=>, ==, >, >=, abs, ceil, coerce15, divmod,
eql?, finite?, floor, hash16, infinite?, modulo, nan?, round, to f, to i, to int,
to s17, truncate, zero?

B.3.12 FloatDomainError

Does not define any constants nor methods.

B.3.13 Hash

Public methods: ==18, [], []=, clear, default, default=, default proc, delete,
each19, empty?, has key?, has value?, include?, index20, inspect21, invert, key?,
keys, length, member?, rehash, size, to a, to hash, to s, value?22, values, valu-
es at

Private methods: initialize

15The coerce method does not convert from strings as in Ruby.
16The hash method uses hashing algorithm form Ruby 1.8.5, as it is more reliable in the absence of

unsigned integer type in PHP than the algorithm used in version 1.8.6.
17The to s method outputs numbers in slightly different format than Ruby.
18The == method does not protect against modification or rehashing during the call.
19The each method does not protect against modification or rehashing during the call.
20The index method does not protect against modification or rehashing during the call.
21The inspect method does not protect against modification or rehashing during the call.
22The value method does not protect against modification or rehashing during the call.

70

B.3.14 IOError

Does not define any constants nor methods.

B.3.15 IndexError

Does not define any constants nor methods.

B.3.16 Integer

Public methods: ceil, downto23, floor, integer?, next, round, succ, times, to i,
to int, truncate, upto24

B.3.17 LoadError

Does not define any constants nor methods.

B.3.18 LocalJumpError

Public methods: exit value, reason

B.3.19 Module

Public methods: ==, ===, ancestors, class variable defined?, class variables,
const defined?, const get, const missing, const set, constants, include?, inclu-
ded modules, instance methods, method defined?, name, private instance methods,
private method defined?, protected instance methods, protected method defined?,
public instance methods, public method defined?, to s

Private methods: append features, attr, attr accessor, attr reader, attr wri-

ter, class variable get, class variable set, include, initialize25, module fun-

ction26, private27, protected28, public29, remove class variable, remove const

B.3.20 NameError

Public methods: name, to s

Private methods: initialize

23The downto method is implemented only for Fixnum.
24The upto method is implemented only for Fixnum.
25The initialize method ignores passed block.
26The module function variant where method names are passed in the parameters is not implemented.
27The private variant where method names are passed in the parameters is not implemented.
28The protected variant where method names are passed in the parameters is not implemented.
29The public variant where method names are passed in the parameters is not implemented.

71

B.3.21 NameError::message

Class methods: !, load

Public methods: dump30, to str31

B.3.22 NilClass

Public methods:, &, ^, inspect, nil?, to a, to f, to i, to s, |

B.3.23 NoMemoryError

Does not define any constants nor methods.

B.3.24 NoMethodError

Public methods: args

Private methods: initialize

B.3.25 NotImplementedError

Does not define any constants nor methods.

B.3.26 Numeric

Public methods: +@, <=>, eql?, integer?, nonzero?, zero?

B.3.27 Object

Private methods: initialize

B.3.28 Proc

Class methods: new

Public methods: []32, call33, to proc

30The message and method parameters of the dump method must be strings.
31The message and method parameters of the to str method must be strings.
32Parameter count of the [] method is not checked—excessive parameters are ignored and missing

parameters are set to nil.
33Parameter count of the call method is not checked—excessive parameters are ignored and missing

parameters are set to nil.

72

B.3.29 Range

Public methods: ==, ===, begin, each, end, eql?, exclude end?, first, hash, inclu-
de?, inspect, last, member?, to s

Private methods: initialize

B.3.30 RangeError

Does not define any constants nor methods.

B.3.31 RegexpError

Does not define any constants nor methods.

B.3.32 RuntimeError

Does not define any constants nor methods.

B.3.33 ScriptError

Does not define any constants nor methods.

B.3.34 SecurityError

Does not define any constants nor methods.

B.3.35 StandardError

Does not define any constants nor methods.

B.3.36 String

Public methods: *, +, <<, <=>, ==, capitalize, capitalize!, casecmp, center, chop,
chop!, concat, crypt, downcase, downcase!, dump, empty?, eql?, hash, include?,
insert, inspect, intern, length, ljust, next, next!, replace, reverse, reverse!,
rjust, size, succ, succ!, swapcase, swapcase!, to s, to str, to sym, upcase, upcase!

Private methods: initialize

B.3.37 Symbol

Class methods: all symbols

Public methods: ===, id2name, inspect, to i, to int, to s, to sym

73

B.3.38 SyntaxError

Does not define any constants nor methods.

B.3.39 SystemExit

Public methods: status, success?

Private methods: initialize

B.3.40 SystemStackError

Does not define any constants nor methods.

B.3.41 ThreadError

Does not define any constants nor methods.

B.3.42 TrueClass

Public methods: &, ^, to s, |

B.3.43 TypeError

Does not define any constants nor methods.

B.3.44 ZeroDivisionError

Does not define any constants nor methods.

B.4 Core Modules

B.4.1 Comparable

Public methods: <, <=, ==, >, >=, between?

B.4.2 Enumerable

Public methods: all?, any?, collect, detect, each with index, entries, find,
find all, grep, include?, inject, map, max, member?, min, partition, reject, select,
sort, to a

74

B.4.3 Kernel

Class methods: block given?, fail, iterator?, lambda34, method missing, p35, print36,
proc37, puts38, raise, warn

Public methods: ==, ===, id , send , class, eql?, equal?, hash, id, inspect,
instance of?, instance variable defined?, instance variable get, instance va-

riable set, instance variables, is a?, kind of?, methods, nil?, object id, priva-
te methods, protected methods, public methods, respond to?, send, singleton me-

thods, to a, to s, type

Private methods: block given?, fail, iterator?, lambda39, method missing, p40,
printf41, proc42, puts43, raise, remove instance variable, warn

B.4.4 ObjectSpace

Class methods: each object

Public methods: each object

B.5 Predefined Constants

Constant Value Description

ARGV (depends on execution) program arguments
FALSE false synonym for false
NIL nil synonym for nil
PLATFORM "php" alias for RUBY PLATFORM

RELEASE DATE "2008-08-08" alias for RUBY RELEASE DATE

RUBY PATCHLEVEL 114 patchlevel of the Ruby language
RUBY PLATFORM "php" platform identifier
RUBY RELEASE DATE "2008-08-08" release date
RUBY VERSION "1.8.6" version of the Ruby language
TRUE true synonym for true
VERSION "1.8.6" alias for RUBY VERSION

Table B.1: Predefined constants.

34The lambda method creates a proc, not lambda as in Ruby.
35The p method always prints to PHP standard output.
36The print method does not print $ when no parameters are given, always prints to PHP standard

output.
37The proc method creates a proc, not lambda as in Ruby.
38The puts method always prints to PHP standard output.
39The lambda method creates a proc, not lambda as in Ruby.
40The p method always prints to PHP standard output.
41The print method does not print $ when no parameters are given, always prints to PHP standard

output.
42The proc method creates a proc, not lambda as in Ruby.
43The puts method always prints to PHP standard output.

75

B.6 Predefined Global Variables

Global Variable Initial Value Description

$! nil currently raised exception
$* (depends on execution) program arguments
$, nil output field separator
$-v (depends on execution) alias for $VERBOSE
$-w (depends on execution) alias for $VERBOSE
$/ "\n" input record separator
$044 (depends on execution) program name
$VERBOSE (depends on execution) verbosity level
$\ nil output record separator

Table B.2: Predefined global variables.

Also note that special global variables $1, $2,. . . that capture regular expression matches
are treated as regular global variables.

76

	Introduction
	Motivation
	Translator Architecture
	Overview

	Ruby Language
	History
	Specification
	Features
	Dynamic Typing
	Object System
	Blocks and Functional Programming Support
	Introspection and Metaprogramming Facilities
	Text-processing Features
	Error Handling
	Automatic Memory Management with Garbage Collection
	Built-in Threading and Continuation Support

	Typical Usage
	Implementations
	MRI
	JRuby
	IronRuby
	Rubinius
	Other Implementations
	MagLev
	MacRuby
	XRuby
	Ruby.NET
	Cardinal
	HotRuby
	IronMonkey

	Summary

	Translator Design
	Implementation Language
	Supported Ruby Subset
	Supported PHP Version
	Optimization
	Integration with PHP
	Using Ruby Code in PHP
	Using PHP Code from Compiled Ruby Programs

	PHP Runtime
	Ruby Object Representation
	Ruby Object Representation in MRI
	Ruby Object Representation in PHP Runtime
	Pass-by-value vs. Pass-by-reference Problem

	Implementation of Ruby Objects
	Object Identity

	Classes and Modules
	Classes
	Modules
	Implications

	Variables
	Local Variables
	Global Variables
	Instance Variables, Class Variables and Constants

	Methods
	Method Information
	Invocation
	Parameters
	Stack

	Blocks
	Exception Handling
	Core Library Classes and Modules
	Core Library Classes and Modules in MRI
	Core Library Classes and Modules in PHP Runtime

	Compiler
	Parser
	Problems with Parsing Ruby
	Parser Implementation
	AST Representation

	Transformer
	Transformer Design
	Statement-Expression Mismatch
	The expression? Method
	Saving of the Node Value
	Solving the Statement-Expression Mismatch

	Transformation of Ruby Constructs
	Literals
	Variables and Constants
	Pseudo-variables
	Assignments
	Block Expressions
	Conditional Statements
	Looping Statements
	break and next Statements
	Method Definitions, Redefinitions and Undefinitions
	Method Invocations
	return and super Statements
	Blocks and the yield Statement
	Class and Module Definitions and Redefinitions
	Exception Raising and Handling

	Serializer

	Related Work
	HotRuby
	Python to OCaml Compiler
	haXe
	PHP Backend

	Summary

	Conclusion
	Inherent Limitations
	Future Work
	Increasing Ruby Language Coverage
	Optimization
	Ruby and PHP Integration
	Multiple Platform Support
	Other Possible Improvements

	References
	Installation and Usage
	Requirements
	Operating System
	Ruby
	PHP

	Installation
	Usage

	Supported Features
	General Limitations
	Language Elements
	Core Classes
	ArgumentError
	Array
	Bignum
	Class
	EOFError
	Exception
	FalseClass
	fatal
	File
	Fixnum
	Float
	FloatDomainError
	Hash
	IOError
	IndexError
	Integer
	LoadError
	LocalJumpError
	Module
	NameError
	NameError::message
	NilClass
	NoMemoryError
	NoMethodError
	NotImplementedError
	Numeric
	Object
	Proc
	Range
	RangeError
	RegexpError
	RuntimeError
	ScriptError
	SecurityError
	StandardError
	String
	Symbol
	SyntaxError
	SystemExit
	SystemStackError
	ThreadError
	TrueClass
	TypeError
	ZeroDivisionError

	Core Modules
	Comparable
	Enumerable
	Kernel
	ObjectSpace

	Predefined Constants
	Predefined Global Variables

